e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 45 (1) Feb. 2022 / JTAS-2375-2021


Arbuscular Mycorrhizal Association with Rattan Species of the Belum-Temengor Forest Complex, Perak, Malaysia

Rosnida Tajuddin and Nor Syafiqah Salleh

Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 1, February 2022


Keywords: Calamus spp., Glomus spp., mycorrhiza, rainforest, rhizosphere

Published on: 10 Febuary 2022

Rattan Calamus spp. is a high commercial value palm from the subfamily Calamoideae the primary source for cane in the well-developed rattan industry. Most studies on rattan have focused on its biodiversity, distribution, quality, strength, physical, mechanical, and morphological properties and genetics. Still, only a few have investigated the association of rattan with arbuscular mycorrhizal (AM) fungi. These mycorrhizal fungi are well known to play essential functions as promoting plant growth, maintaining plant community biodiversity and nutrient cycles in soil. This study aims to identify the established AM fungi community and their ecological interactions with Calamus spp. in the Belum-Temengor Forest Complex, Perak, Malaysia. Calamus spp. roots and their rhizospheric soil samples were collected from six sampling sites in the Belum-Temengor Forest Complex, one of the oldest rainforests in the world. The degree of mycorrhizal colonisation in Calamus spp. was evaluated using the grid lines method. At the same time, the AM fungi spore diversity in the rhizospheric soils were isolated using the wet sieving method and identified taxonomically analysed into different genera. Calamus insignis showed the highest degree of mycorrhizal colonisation amongst all the Calamus spp. present on the sampling sites. The AM fungi spores isolated from the rhizospheric soil from Belum-Temengor Forest Complex belonged to the genera Acaulospora, Entrophospora, Gigaspora, Glomus, and Scutellospora. Glomus was the most frequently found genus in all the sampling sites. This study is the first record of the AM fungal diversity found in the Belum-Temengor Forest Complex.

  • Afentina., McShane, P., & Wright, W. (2020). Ethnobotany, rattan agroforestry, and conservation of ecosystem services in Central Kalimantan, Indonesia. Agroforestry Systems, 94(2), 639–650.

  • Ait-El-Mokhtar, M., Laouane, R. B., Anli, M., Boutasknit, A., Wahbi, S., & Meddich, A. (2019). Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 253, 429–438.

  • Andrade Júnior, J. A. D., Souza, B. R. D., Souza, R. F., & Moura, J. B. D. (2018). Fixação de carbono em sistemas agroecológicos na região do Vale do São Patrício, Goiás [Carbon sequestration in agroecological systems in the region of the São Patrício Valley, Goiás]. Científic@-Multidisciplinary Journal, 5(2), 85–98.

  • Baillie, J. E. M., Hilton-Taylor, C., Stuart, S. N., & Zedan, H. (2004). 2004 IUCN Red List of Threatened Species: A global species assessment. International Union for the Conservation of Nature and Natural Resources.

  • Ban, Y., Jiang, Y., Li, M., Zhang, X., Zhang, S., Wu, Y., & Xu, Z. (2017). Homogenous stands of a wetland grass living in heavy metal polluted wetlands harbor diverse consortia of arbuscular mycorrhizal fungi. Chemosphere, 181, 699–709.

  • Bever, J. D., Morton, J. B., Antonovics, J., & Schultz, P. A. (1996). Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a Mown Grassland. The Journal of Ecology, 84(1), 71-82.

  • Bonfante, P., & Requena, N. (2011). Dating in the dark: How roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 14(4), 451–457.

  • Brundett, M., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (1996). Working with mycorrhizas in forestry and agriculture (ACIAR monographs). Australian Centre for International Agricultural Research (ACIAR).

  • Brundrett, M. C., & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220(4), 1108–1115.

  • Carrenho, R., Trufem, S. F. B., Bononi, V. L. R., & Silva, E. S. (2007). The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize. Acta Botanica Brasilica, 21(3), 723–730.

  • Cavagnaro, T. R., Gao, L., Smith, F. A., & Smith, S. E. (2001). Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytologist, 151(2), 469–475.

  • Cervantes-Gámez, R. G., Bueno-Ibarra, M. A., Cruz-Mendívil, A., Calderón-Vázquez, C. L., Ramírez-Douriet, C. M., Maldonado-Mendoza, I. E., Villalobos-López, M. N., Valdez-Ortíz, N., & López-Meyer, M. (2016). Arbuscular mycorrhizal symbiosis-induced expression changes in Solanum lycopersicum leaves revealed by RNA-seq analysis. Plant Molecular Biology Reporter, 34(1), 89–102.

  • Chin, T. Y., Nor Akhiruddin, M., Samsuanuar, M., Yong, N., Hasnuddin, M. A., & Nasir, M. S. I. (1994). Inventori Hutan Nasional Ketiga Semenanjung Malaysia [The Third National Forest Inventory of Peninsular Malaysia]. Jabatan Perhutanan Semenanjung Malaysia.

  • Dandan, Z., & Zhiwei, Z. (2007). Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, Southwest China. Applied Soil Ecology, 37(1–2), 118–128.

  • Davison, J., Moora, M., Opik, M., Adholeya, A., Ainsaar, L., Ba, A., Burla, S., Diedhiou, A. G., Hiiesalu, I., Jairus, T., Johnson, N. C., Kane, A., Koorem, K., Kochar, M., Ndiaye, C., Partel, M., Reier, U., Saks, U., Singh, R., . . . Zobel, M. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 349(6251), 970–973.

  • de Moura, J. B., de Souza, R. F., Junior, W. G. V., Lima, I. R., Brito, G. H. M., & Marín, C. (2019). Arbuscular mycorrhizal fungi associated with bamboo under Cerrado Brazilian vegetation. Journal of Soil Science and Plant Nutrition, 19(4), 954–962.

  • Dransfield, J. (1992). The ecology and natural history of rattans. In A guide to the cultivation of rattan (pp. 27–33). Forest Research Institute Malaysia.

  • Franken, P. (2010). Molecular–physiological aspects of the AM symbiosis post penetration. In H. Koltai & Y. Kapulnik (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 93–116). Springer.

  • Gai, J. P., Christie, P., Cai, X. B., Fan, J. Q., Zhang, J. L., Feng, G., & Li, X. L. (2009). Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecological Research, 24(6), 1345–1350.

  • Gentry, A. (1991). Distribution and evolution of climbing plants. In F. E. Putz & H. A. Mooney (Eds.), The biology of vines (pp. 3–49). Cambridge University Press.

  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489–500.

  • GLOBE. (2014). GLOBE Soil temperature protocol.

  • Gong, M. Q., Chen, Y., & Wang, F. Z. (1994). Study on VA mycorrhizae of rattan species. Forest Research, 7(4), 359-363.

  • Gong, M. Q., Chen, Y., & Wang, F. Z. (1995). Successful inoculation on rattan seedlings with VA mycorrhizal fungus. Forest Research, 8(3), 247–251.

  • Gong, M. Q., Wang, F. Z., & Chen, Y. (2000). Effectiveness of VA mycorrhizal fungi associated with rattan. In H. C. Xu, A. N. Rao, B. S. Zheng, & G. T. Yin (Eds.), Research on rattans in China (pp. 15-25). International Plant Genetic Resources Institute.

  • Hart, M. M., & Reader, R. J. (2002). Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist, 153(2), 335–344.

  • Heijden, M. G. A., Martin, F. M., Selosse, M., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205(4), 1406–1423.

  • Hirschberger, P. (2011). Global rattan trade: Pressure on forest resources, analysis and challenges.

  • Huang, G. M., Zou, Y. N., Wu, Q. S., Xu, Y. J., & Kuča, K. (2020). Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant, Soil and Environment, 66(6), 295–302.

  • Isnard, S. (2006). Biomechanics and development of rattans: What is special about Plectocomia himalayana Griff. (Calamoideae, Plectocomiinae)?. Botanical Journal of the Linnean Society, 151(1), 83–91.

  • Isnard, S., & Rowe, N. P. (2007). Mechanical role of the leaf sheath in rattans. New Phytologist, 177(3), 643–652.

  • Keen Chubo, J., Kian Huat, O., Md. Jais, H., Faiqoh Mardatin, N., & Muhamad Nik Abdul Majid, N. (2009). Genera of arbuscular mycorrhiza occurring within the rhizospheres of Octomeles sumatrana and Anthocephalus chinensis in Niah, Sarawak, Malaysia. ScienceAsia, 35(4), 340-345.

  • Kohler, J., Roldán, A., Campoy, M., & Caravaca, F. (2016). Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents. Plant and Soil, 410(1–2), 273–281.

  • Kusuma, Y. W. C., Dodo., & Hendrian, R. (2011). Propagation and transplanting of manau rattan Calamus manan in Bukit Dua Belas National Park, Sumatra, Indonesia. Conservation Evidence, 8, 19–25.

  • Lee, B. R., Muneer, S., Avice, J. C., Jung, W. J., & Kim, T. H. (2012). Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza, 22(7), 525–534.

  • Lekberg, Y., Koide, R. T., Rohr, J. R., Aldrich-Wolfe, L., & Morton, J. B. (2007). Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology, 95(1), 95–105.

  • Loss, A., Robles, A., Guilherme, A., Callegario, P., Ana Carolina, L., Otávio, R., Lima, M., Márcio, O., Ribeiro da, S., Eliane, M., Saggin, J., & Orivaldo, J. (2009). Atributos químicos do solo e ocorrência de fungos micorrízicos sob áreas de pastagem e sistema agroflorestal, Brasil [Chemical attributes of soil and occurrence of mycorrhizal fungi under areas of pasture and agroforest system, Brazil]. Acta Agronómica, 58(2), 91–95.

  • Lyngdoh, N., Santosh, S. H., Ramesha, T., Nageswara Rao, M., Ravikanth, G., Narayani, B., Ganeshaiah, K. N., & Uma Shaanker, R. (2005). Rattan species richness and population genetic structure of Calamus flagellum in North-Eastern Himalaya, India. Journal of Bamboo and Rattan, 4(3), 293–307.

  • Mahulette, A. S., Alfian, A., Kilkoda, A. K., Lawalata, I. J., Marasabessy, D. A., Tanasale, V. L., & Makaruku, M. H. (2021). Isolation and identification of indigenous Arbuscular Mycorrhizal Fungi (AMF) of forest clove rhizosphere from Maluku, Indonesia. Biodiversitas Journal of Biological Diversity, 22(8).

  • Malaysian Meteorological Department. (n.d.). Iklim Malaysia [Climate of Malaysia].

  • Marati, R., & Devadiga, S. (2018). Screening of the Arbuscular Mycorrhizae in the rhizosphere soils of three Rattan species of Charmady Kanpadi Reserve Forest of Karnakata, India. International Journal of Life Sciences Research, 6(3), 312–317.

  • Marinho, F., da Silva, I. R., Oehl, F., & Maia, L. C. (2018). Checklist of arbuscular mycorrhizal fungi in tropical forests. Sydowia, 70, 107–127.

  • Mathew, A., & Bhat, K. M. (1997). Anatomical diversity of Indian rattan palms (Calamoideae) in relation to biogeography and systematics. Botanical Journal of the Linnean Society, 125(1), 71–86.

  • McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115(3), 495–501.

  • Meddich, A., Oihabi, A., Jaiti, F., Bourzik, W., & Hafidi, M. (2015). Rôle des champignons mycorhiziens arbusculaires dans la tolérance du palmier dattier (Phoenix dactylifera) à la fusariose vasculaire et au déficit hydrique [Role of arbuscular mycorrhizal fungi in date palm (Phoenix dactylifera) tolerance to Fusarium wilt and water deficit]. Botany, 93(6), 369–377.

  • Minitab. (2019). Minitab®.

  • Miransari, M. (2011). Soil microbes and plant fertilization. Applied Microbiology and Biotechnology, 92(5), 875–885.

  • Mohamad, A. (1993). PROSEA - Plant Resources of Southeast Asia. PROSEA.

  • Muleta, D., Assefa, F., Nemomissa, S., & Granhall, U. (2008). Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biology and Fertility of Soils, 44(4), 653–659.

  • Oehl, F., Laczko, E., Bogenrieder, A., Stahr, K., Bösch, R., van der Heijden, M., & Sieverding, E. (2010). Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 42(5), 724–738.

  • Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., & da Silva, G. A. (2011). Advances in Glomeromycota taxonomy and classification. IMA Fungus, 2(2), 191–199.

  • Ong, K. H., Chubo, J. K., King, J. H., Lee, C. S., Su, D. S. A., & Sipen, P. (2012). Influence of soil chemical properties on relative abundance of arbuscular mycorrhiza in forested soils in Malaysia. Turkish Journal of Agriculture and Forestry, 36(4), 451–458.

  • Peterson, R. L., Massicotte, H. B., & Melville, L. H. (2004). Mycorrhizas. NRC Research Press.

  • Piotrowski, J. S., Denich, T., Klironomos, J. N., Graham, J. M., & Rillig, M. C. (2004). The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. New Phytologist, 164(2), 365–373.

  • Ramesha, B. T., Ravikanth, G., Nageswara Rao, M., Ganeshaiah, K. N., & Uma Shaanker, R. (2007). Genetic structure of the rattan Calamus thwaitesii in core, buffer, and peripheral regions of three protected areas in central Western Ghats, India: Do protected areas serve as refugia for genetic resources of economically important plants?. Journal of Genetics, 86(1), 9–18.

  • Reddy, C. A., & Saravanan, R. S. (2013). Polymicrobial multi-functional approach for enhancement of crop productivity. Advances in Applied Microbiology, 82, 53–113.

  • Sarmah, P., Barua, P. K., Sarma, R. N., Sen, P., & Deka, P. C. (2007). Genetic diversity among rattan genotypes from India based on RAPD-marker analysis. Genetic Resources and Crop Evolution, 54(3), 593–600.

  • Schenk, N. C., & Perez, Y. (1990). Manual for identification of VA mycorrhizal fungi (3rd ed.). Synergistic Publications.

  • Schweiger, R., & Müller, C. (2015). Leaf metabolome in arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 26, 120–126.

  • Silva, L. X. D., Figueiredo, M. D. V. B., Silva, G. A. D., Goto, B. T., Oliveira, J. D. P., & Burity, H. A. (2007). Fungos micorrízicos arbusculares em áreas de plantio de leucena e sábia no estado de Pernambuco [Arbuscular mycorrhizal fungi in areas of leucaena and sage plantation in the state of Pernambuco]. Revista Árvore, 31(3), 427–435.

  • Silva-Flores, P., Bueno, C. G., Neira, J., & Palfner, G. (2019). Factors affecting arbuscular mycorrhizal fungi spore density in the Chilean Mediterranean-type ecosystem. Journal of Soil Science and Plant Nutrition, 19(1), 42–50.

  • Smith, F. A., & Smith, S. E. (1997). Structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytologist, 137(3), 373–388.

  • Smith, S. E., & Read, D. (2008). The symbionts forming arbuscular mycorrhizas. In S. E. Smith & D. Read (Eds.), Mycorrhizal symbiosis (3rd ed., pp. 13–41). Academic Press.

  • Stiegel, S., Kessler, M., Getto, D., Thonhofer, J., & Siebert, S. F. (2011). Elevational patterns of species richness and density of rattan palms (Arecaceae: Calamoideae) in Central Sulawesi, Indonesia. Biodiversity and Conservation, 20(9), 1987–2005.

  • Sudarmonowati, E., Mogea, J. P., Hartati, N. S., Hong, L., & Rao, V. R. (2004). Morphology and genetic variation of manau rattan (Calamus manan Miq.) in Sumatra, Indonesia. Journal of Bamboo and Rattan, 3(2), 123–137.

  • Thien, S. J. (1979). A flow diagram for teaching texture-by-feel analysis. Journal of Agronomic Education, 8(1), 54–55.

  • Torrecillas, E., del Mar Alguacil, M., Roldán, A., Díaz, G., Montesinos-Navarro, A., & Torres, M. P. (2014). Modularity reveals the tendency of arbuscular mycorrhizal fungi to interact differently with generalist and specialist plant species in gypsum soils. Applied and Environmental Microbiology, 80(17), 5457–5466.

  • Vieira, L. C., da Silva, D. K. A., Escobar, I. E. C., da Silva, J. M., de Moura, I. A., Oehl, F., & da Silva, G. A. (2020). Changes in an arbuscular mycorrhizal fungi community along an environmental gradient. Plants, 9(1), 52.

  • Whiting, D., Card, A., & Wilson, C. (2015). Estimating soil texture.

  • Wicaksono, W. A., Sansom, C. E., Eirian Jones, E., Perry, N. B., Monk, J., & Ridgway, H. J. (2018). Arbuscular mycorrhizal fungi associated with Leptospermum scoparium (mānuka): Effects on plant growth and essential oil content. Symbiosis, 75(1), 39–50.

  • Wipf, D., Mongelard, G., van Tuinen, D., Gutierrez, L., & Casieri, L. (2014). Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 5, 680.

  • Zakaria, M. (1991). Preliminary studies on growth dependency of in vitro micropropagated Calamus manan on VA mycorrhiza (VAM) prior to transplanting to the field. RIC Bulletin, 10(1), 6–7.

  • Zhao, H., Li, X., Zhang, Z., Zhao, Y., Yang, J., & Zhu, Y. (2017). Species diversity and drivers of arbuscular mycorrhizal fungal communities in a semi-arid mountain in China. PeerJ, 5, e4155.

  • Zhao, Z. W., Wang, G. H., & Yang, L. (2003). Biodiversity of arbuscular mycorrhizal fungi in a tropical rainforest of Xishuangbanna, southwest China. Fungal Diversity, 13, 233–242.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Recent Articles