Home / Regular Issue / JTAS Vol. 46 (1) Feb. 2023 / JTAS-2558-2022

 

In vitro Bioactivity Evaluation of Ziziphus mauritiana Lam. (Bidara) Leaves Extract against Vector Mosquitoes Aedes spp. and Culex quinquefasciatus

Ai Wei Lim, Azlinda Abu Bakar, Mohd Firdaus Lai and Mohamad Nurul Azmi Mohamad Taib

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 1, February 2023

DOI: https://doi.org/10.47836/pjtas.46.1.15

Keywords: Aedes spp., bioactivity, crude extracts, Culex quinquefasciatus, Ziziphus mauritiana

Published on: 22 Febuary 2023

Ziziphus mauritiana methanol crude extract was evaluated for its insecticidal properties against Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquito larvae. Bioassays against larvae mosquitoes were done following World Health Organization’s guidelines. Late third and/or early fourth instar of mosquito larva were assayed for five different concentrations viz. 100, 150, 200, 250, and 300 mg ml–1 of Z. mauritiana crude extracts. From the results obtained, Aedes aegypti was the most susceptible to Z. mauritiana crude extracts. The percentage of mortality exhibited above 50% of 200, 250, and 300 mg ml–1 in 24, 48, and 72 hr exposure. Thus, it gives the lowest LC50 within 24 hr of exposure (121.98 mg L–1), followed by Ae. Albopictus (189.89 mg L–1) and Cx. Quinquefasciatus (246.22 mg L–1). Observation of the morphology effect of the dead larvae shows Ae. Aegypti was the most affected, followed by Ae. Albopictus and Cx. Quinquefasciatus. A ruptured midgut was observed in 100 and 200 mg ml–1 concentrations. In contrast, in higher concentrations of 300 mg ml–1, the abdominal segments were indistinguishable, and the head and thorax regions were severely damaged. This study suggested that Z. mauritiana methanolic crude extracts were potent against Ae. Aegypti larvae mosquitoes and have the potential to be used as an alternative larvicide in population control. However, further studies are required to establish the potential of Z. mauritiana larvicidal effects in the field setting.

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-266. https://doi.org/10.1093/jee/18.2.265a

  • Amaliyah, N., Purnomo, A., Khayan, K., Wardoyo, S., & Anwar, T. (2021). Z. mauritiana leaves as larvasidal alternatives. KEMAS: Jurnal Kesehatan Masyarakat, 17(1), 24-30. https://doi.org/10.15294/kemas.v17i1.24377

  • Askur, A., Adiningsih, R., & Ganning, A. (2021). Utilization of bidara eaf (Ziziphus mauritiana L.) extract as a natural larvacide. Urban Health, 3(1), 103-107.

  • Aydin, T., Bayrak, N., Baran, E., & Cakir, A. (2017). Insecticidal effects of extracts of Humulus lupulus (hops) L. cones and its principal component, xanthohumol. Bulletin Entomological Research, 107(4), 543-549. https://doi.org/10.1017/S0007485317000256

  • Bakar, A. A. (2020). Bioactivity evaluation of Melaleuca cajuputi (Myrtales): Myrtaceae crude extracts against Aedes mosquito. Pertanika Journal of Tropical Agricultural Science, 43(3), 303-313.

  • Benedict, M. Q., Levine, R. S., Hawley, W. A., & Lounibos, L. P. (2007). Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector Borne and Zoonotic Diseases, 7(1), 76–85. https://doi.org/10.1089/vbz.2006.0562

  • European Centre for Disease Prevention and Control. (2021). Chikungunya worldwide overview. ECDC. https://www.ecdc.europa.eu/en/chikungunya-monthly

  • Finney, D. J. (1971). Probit analysis (3rd ed.). Cambridge University Press.

  • Harvey-Samuel, T., Ant, T. H., Sutton, J., Niebhur, C.-N., Asigau, S., Parker, P., Sinkins, S., & Alphey, L. (2021). Culex quinquefasciatus: Status as a threat to island avifauna and options for genetic control. CABI Agriculture and Bioscience, 2, 9. https://doi.org/10.1186/s43170-021-00030-1

  • Higa, Y. (2011). Dengue vectors and their spatial distribution. Tropical Medicine and Health, 39(4 Supplement), S17–S27. https://doi.org/10.2149/tmh.2011-S04

  • Merritt, R. W., Dadd, R. H., & Walker, E. D. (1992). Feeding behaviour, natural food, and nutritional relationships of larval mosquitoes. Annual Review of Entomology, 37(1), 349-374. https://doi.org/10.1146/annurev.en.37.010192.002025

  • Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(5), 31–34. https://doi.org/10.1055/s-2007-971236

  • Mohd Jailani, F. N. A., Zaidan, U. H., Abdul Rahim, M. B. H., Abd Gani, S. S., & Effendi Halmi, M. I. (2020). Evaluation of constituents and physicochemical properties of Malaysian underutilized Ziziphus mauritiana (Bidara) for nutraceutical potential. International Journal of Fruit Science, 20(3), 394-402. https://doi.org/10.1080/15538362.2019.1641458

  • Montell, C., & Zwiebel, L. J. (2016). Mosquito sensory systems. In A. S. Raikhel (Ed.), Advances in insect physiology (1st ed., pp. 293-328). Academic Press. https://doi.org/10.1016/bs.aiip.2016.04.007

  • Procópio, T. F., Fernandes, K. M., Pontual, E. V., Ximenes, R. M., de Oliveira, A. R., Souza, C., Melo, A. M., Navarro, D. M., Paiva, P. M., Martins, G. F., & Napoleão, T. H. (2015). Schinus terebinthifolius leaf extract causes midgut damage, interfering with survival and development of Aedes aegypti larvae. PLOS One, 10(5), e0126612. https://doi.org/10.1371/journal.pone.0126612

  • Ravi, R., Rajendran, D., Oh, W. D., Mat Rasat, M. S., Hamzah, Z., Ishak, I. H., & Mohamad Amin, M. F. (2020). The potential use of Azolla pinnata as an alternative bio-insecticide. Scientific Reports, 10(1), 19245. https://doi.org/10.1038/s41598-020-75054-0

  • Santos Pimenta, L. P., Pinto, G. B., Takahashi, J. A., e Silva, L. G., & Boaventura, M. A. (2003). Biological screening of annonaceous Brazilian medicinal plants using Artemia salina (brine shrimp test). Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 10(2-3), 209–212. https://doi.org/10.1078/094471103321659960

  • Şengül Demirak, M. Ş., & Canpolat, E. (2022). Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects, 13(2), 162. https://doi.org/10.3390/insects13020162

  • Velázquez-Martínez, V., Valles-Rosales, D., Rodríguez-Uribe, L., Laguna-Camacho, J. R., López-Calderón, H. D., & Delgado, E. (2022). Effect of different extraction methods and geographical origins on the total phenolic yield, composition, and antimicrobial activity of sugarcane bagasse extracts. Frontiers in Nutrition, 9, 834557. https://doi.org/10.3389/fnut.2022.834557

  • Wang, Z., Perumalsamy, H., Wang, X., & Ahn, Y.-J. (2019). Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Scientific Reports, 9, 411. https://doi.org/10.1038/s41598-018-36558-y

  • World Health Organization. (2005). Guidelines for laboratory and field testing of mosquito. WHO. https://apps.who.int/iris/handle/10665/69101

  • World Health Organization. (2020). Vector-borne diseases. WHO. https://www.who.int/newsroom/fact-sheets/detail/vector-borne-diseases

  • World Health Organization. (2021). Dengue situation. WHO. https://www.who.int/docs/defaultsource/wprodocuments/emergency/surveillance/deue/dengue-20210923.pdf?sfvrsn=fc80101d_90

  • Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 20. https://doi.org/10.1186/s13020-018-0177-x

  • Zulkrnin, N. S. H., Rozhan, N. N., Zulkfili, N. A., Nik Yusoff, N. R., Rasat, M., Abdullah, N. H., Ahmad, M. I., Ravi, R., Ishak, I. H., & Mohd Amin, M. F. (2018). Larvicidal effectiveness of Azolla pinnata against Aedes aegypti (Diptera: Culicidae) with its effects on larval morphology and visualization of behavioural response. Journal of Parasitology Research, 2018, 50783339. https://doi.org/10.1155/2018/1383186

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2558-2022

Download Full Article PDF

Share this article

Related Articles