e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 46 (2) May. 2023 / JTAS-2567-2022


Preliminary in silico Analysis of CHS1 Gene in Commelinids Clade: Family Zingiberaceae, Costaceae, and Poaceae

Seemab Akram, Shahrizim Zulkifly, Shamsul Khamis and Nurul Izza Ab Ghani

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 2, May 2023


Keywords: CHS1 gene, commelinids, Costaceae, evolution, Poaceae, Zingiberaceae

Published on: 16 May 2023

The chalcone synthase (CHS) gene families are known to be conserved in plants and have been well-studied in many plants, and they have an important role in the physiological and biological processes of plants. One of the studied CHS gene families is the CHS1 gene. CHS1 gene is known for its function in the flavonoid biosynthetic pathway. However, not many studies have been reported on the CHS1 gene in the Commelinids clade, especially the evolution of this gene within three families: Zingiberaceae, Costaceae, and Poaceae. Thus, this study aimed to perform a preliminary in silico comparative analysis of the CHS1 gene across these three families. Through this in silico comparative analysis, 20 partial sequences of the CHS1 gene, which are restricted to 565 bp regions, were analysed. The partial sequences were extracted from the National Center for Biotechnology Information database comprised of 16 Zingiberaceae species, three Costaceae species, and one Poaceae species. From the analysis, these targeted regions showed a low polymorphic site (18.23%) with 103 positions of single nucleotide polymorphisms and three mutations (substitution, insertion, and deletion). Meanwhile, phylogenetic analysis showed no clear evolutionary pattern within the three studied families. In conclusion, the studied partial sequences of the CHS1 gene in Zingiberaceae, Costaceae, and Poaceae showed that the gene is conserved within the Commelinids clade. Further studies to understand the consequences of low polymorphism and mutations as well as adaptive evolution in the CHS1 gene, accompanied by biochemistry and gene expression studies, should be done in these 20 species of Zingiberaceae, Costaceae, and Poaceae.

  • Anguraj Vadivel, A. K., Krysiak, K., Tian, G., & Dhaubhadel, S. (2018). Genome-wide identification and localization of chalcone synthase family in soybean (Glycine max [L] Merr). BMC Plant Biology, 18, 325.

  • Austin, M. B., & Noel, J. P. (2003). The chalcone synthase superfamily of type III polyketide synthases. Natural Product Reports, 20(1), 79-110.

  • Ayer, D., Modha, K., Parekh, V., Patel, R., Ramtekey, V., & Bhuriya, A. (2018). Comparative gene expression study between two turmeric (Curcuma longa L.) cultivars. Journal of Spices and Aromatic Crops, 27(2), 131-137.

  • Cheniany, M., Ebrahimzadeh, H., & Masoudi-nejad, A. (2012). Expression of chalcone synthase influences flavonoid content and frequency of rhizogenesis in microshoots of Juglans regia L. Plant Cell, Tissue and Organ Culture, 109(1), 51-59.

  • Chia, Y. C., Teh, S. H., & Mohamed, Z. (2020). Isolation and characterization of chalcone isomerase (CHI) gene from Boesenbergia rotunda. South African Journal of Botany, 130, 475-482.

  • Chiang, Y. C., Schaal, B. A., Chou, C. H., Huang, S., & Chiang, T. Y. (2003). Contrasting selection modes at the Adh1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). American Journal of Botany, 90(4), 561-570.

  • Chiang, Y. C., Schaal, B. A., Ge, X. J., & Chiang, T. Y. (2004). Range expansion leading to departures from neutrality in the nonsymbiotic hemoglobin gene and the cpDNA trnL–trnF intergenic spacer in Trema dielsiana (Ulmaceae). Molecular Phylogenetics and Evolution, 31(3), 929-942.

  • Christensen, A. B., Gregersen, P. L., Schroder, J., & Collinge, D. B. (1998). A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Molecular Biology, 37(5), 849-857.

  • Clegg, M. T., Cummings, M. P., & Durbin, M. L. (1997). The evolution of plant nuclear genes. Proceedings of the National Academy of Sciences, 94(15), 7791-7798.

  • Dao, T. T. H., Linthorst, H. J. M., & Verpoorte, R. (2011). Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews, 10(3), 397-412.

  • Dare, A. P., Tomes, S., Jones, M., McGhie, T. K., Stevenson, D. E., Johnson, R. A., & Hellens, R. P. (2013). Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus domestica). The Plant Journal, 74(3), 398-410.

  • De Meaux, J., Pop, A., & Mitchell-Olds, T. (2006). Cis-regulatory evolution of chalcone-synthase expression in the genus Arabidopsis. Genetics, 174(4), 2181-2202.

  • Deepa, K., Sheeja, T. E., Rosana, O. B., Srinivasan, V., Krishnamurthy, K. S., & Sasikumar, B. (2017). Highly conserved sequence of ClPKS11 encodes a novel polyketide synthase involved in curcumin biosynthesis in turmeric (Curcuma longa L.). Industrial Crops and Products, 97, 229-241.

  • Deng, X., Bashandy, H., Ainasoja, M., Kontturi, J., Pietiäinen, M., Laitinen, R. A., & Teeri, T. H. (2014). Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of Gerbera hybrida. New Phytologist, 201(4), 1469-1483.

  • Durbin, M. L., McCaig, B., & Clegg, M. T. (2000). Molecular evolution of the chalcone synthase multigene family in the morning glory genome. In J. J. Doyle & B. S. Gaut (Eds.), Plant molecular evolution, (pp. 79-92).

  • Ezoe, A., Shirai, K., & Hanada, K. (2021). Degree of functional divergence in duplicates is associated with distinct roles in plant evolution. Molecular Biology and Evolution, 38(4),1447-1459.

  • Feinbaum, R. L., & Ausubel, F. M. (1988). Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Molecular and Cellular Biology, 8(5), 1985-1992.

  • Glagoleva, A. Y., Ivanisenko, N. V., & Khlestkina, E. K. (2019). Organization and evolution of the chalcone synthase gene family in bread wheat and relative species. BMC Genetics, 20(Suppl 1), 30.

  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41(2), 95-98.

  • Han, Y., Cao, Y., Jiang, H., & Ding, T. (2017). Genome-wide dissection of the chalcone synthase gene family in Oryza sativa. Molecular Breeding, 37, 119.

  • Han, Y., Ding, T., Su, B., & Jiang, H. (2016). Genome-wide identification, characterization and expression analysis of the chalcone synthase family in maize. International Journal of Molecular Sciences, 17(2), 161.

  • Huang, J. X., Qu, L. J., Yang, J., Yin, H., & Gu, H. Y. (2004). A preliminary study on the origin and evolution of chalcone synthase (CHS) gene in angiosperms. Acta Botanica Sinica, 46(1), 10-19.

  • Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108.

  • Ito, M., Ichinose, Y., Kato, H., Shiraishi, T., & Yamada, T. (1997). Molecular evolution and functional relevance of the chalcone synthase genes of pea. Molecular and General Genetics, 255, 28-37.

  • Jiang, M., & Cao, J. (2008). Sequence variation of chalcone synthase gene in a spontaneous white-flower mutant of Chinese cabbage-pak-choi. Molecular Biology Reports, 35, 507-512.

  • Johnson, E. T., & Dowd, P. F. (2004). Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. Journal of Agricultural and Food Chemistry, 52(16), 5135-5138.

  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge University Press.

  • Koch, M. A., Haubold, B., & Mitchell-Olds, T. (2000). Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Molecular Biology and Evolution, 17(10), 1483-1498.

  • Koes, R. E., Spelt, C. E., & Mol, J. N. M. (1989). The chalcone synthase multigene family of Petunia hybrida (V30): Differential, light-regulated expression during flower development and UV light induction. Plant Molecular Biology, 12, 213-225.

  • Koes, R. E., Spelt, C. E., Mol, J. N. M., & Gerats, A. G. M. (1987). The chalcone synthase multigene family of Petunia hybrida (V30): Sequence homology, chromosomal localization and evolutionary aspects. Plant Molecular Biology, 10(2), 159-169.

  • Kreuzaler, F., Ragg, H., Fautz, E., Kuhn, D. N., & Hahlbrock, K. (1983). UV-induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proceedings of the National Academy of Sciences, 80(9), 2591-2593.

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549.

  • Liu, X. J., Chuang, Y. N., Chiou, C. Y., Chin, D. C., Shen, F. Q., & Yeh, K. W. (2012). Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars. Planta, 236(2), 401-409.

  • Lynch, M., & Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science, 290(5494), 1151-1155.

  • Matsuo, Y., & Yamazaki, T. (1989). Nucleotide variation and divergence in the histone multigene family in Drosophila melanogaster. Genetics, 122(1), 87-97.

  • Mitchell-Olds, T. (2001). Arabidopsis thaliana and its wild relatives: A model system for ecology and evolution. Trends in Ecology and Evolution, 16(12), 693-700.

  • Nei, M., & Rooney, A. P. (2005). Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics, 39, 121-152.

  • Radhakrishnan, E. K., & Soniya, E. V. (2009). Molecular analysis of type III polyketide synthase (PKS) gene family from Zingiber officinale Rosc. International Journal of Plant Breeding and Genetics, 6(9), 1-5.

  • Rausher, M. D. (2006). The evolution of flavonoids and their genes. In E. Grotewold (Ed.), The science of flavonoids (pp. 175-211). Springer.

  • Reams, A. B., & Roth, J. R. (2015). Mechanisms of gene duplication and amplification. Cold Spring Harbor Perspectives in Biology, 7(2), a016592.

  • Resmi, M. S., & Soniya, E. V. (2012). Molecular cloning and differential expressions of two cDNA encoding type III polyketide synthase in different tissues of Curcuma longa L. Gene, 491(2), 278-283.

  • Roslan, B. N., Huy, T. S., Kee, L. Y., Abd Rahman, N., & Mohamed, Z. (2020). Analyses of Boesenbergia rotunda cell suspension cultures with overexpressed chalcone synthase (CHS) manifesting changes on the expression level of flavonoid-related genes. Malaysian Journal of Science, 39(1), 15-29.

  • Roslan, B. N., Huy, T. S., Ming, W. S., Khalid, N., & Mohamed, Z. (2020). Tissue specific expression of chalcone synthase (CHS) transcripts and overexpression of BrCHS in cell suspension cultures of Boesenbergia rotunda. Malaysian Journal of Science, 39(2), 92-110.

  • Schroder, J., Raiber, S., Berger, T., Schmidt, A., Schmidt, J., Soares-Sello, A. M., & Schroder, G. (1998). Plant polyketide synthases: A chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. Biochemistry, 37(23), 8417-8425.

  • Senda, M., Kasai, A., Yumoto, S., Akada, S., Ishikawa, R., Harada, T., & Niizeki, M. (2002). Sequence divergence at chalcone synthase gene in pigmented seed coat soybean mutants of the inhibitor locus. Genes and Genetic Systems, 77(5), 341-350.

  • Sommer, H., & Saedler, H. (1986). Structure of the chalcone synthase gene of Antirrhinum majus. Molecular and General Genetics, 202(3), 429-434.

  • Trojan, V., Musilova, M., Vyhnánek, T., Klejdus, B., Hanacek, P., & Havel, L. (2014). Chalcone synthase expression and pigments deposition in wheat with purple and blue colored caryopsis. Journal of Cereal Science, 59(1), 48-55.

  • Tuteja, J. H., Clough, S. J., Chan, W. C., & Vodkin, L. O. (2004). Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. The Plant Cell, 16(4), 819-835.

  • Vision, T. J., Brown, D. G., & Tanksley, S. D. (2000). The origins of genomic duplications in Arabidopsis. Science, 290(5499), 2114-2117.

  • Yang, J., Gu, H., & Yang, Z. (2004). Likelihood analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea). Journal of Molecular Evolution, 58(1), 54-63.

  • Yang, J., Huang, J., Gu, H., Zhong, Y., & Yang, Z. (2002). Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae). Molecular Biology and Evolution, 19(10), 1752-1759.

  • Yuan, L., Pan, K., Li, Y., Yi, B., & Gao, B. (2021). Comparative transcriptome analysis of Alpinia oxyphylla Miq. reveals tissue-specific expression of flavonoid biosynthesis genes. BMC Genomic Data, 22, 19.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Related Articles