e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 46 (4) Nov. 2023 / JTAS-2689-2023


Optimisation of Bioflocculation Using Anabaena sp. and Navicula sp. for Harvesting of Glagah Microalgae Consortium

Erik Lawijaya, Dwi Umi Siswanti and Eko Agus Suyono

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 4, November 2023


Keywords: Anabaena sp., bioflocculation, co-culture, Glagah Consortium, Navicula sp.

Published on: 27 November 2023

One of the problems in microalgae is harvesting. Currently, many chemical methods are used that impact the environment. Not all of them can be used as a filter, so bioflocculation is used because there is no need to change the medium. This method is an environmentally friendly and efficient alternative to chemical flocculants that usually cause contamination of biomass and health. Previous studies have shown that different ratios of auto-flocculated microalgae in cocultures affect the flocculation rate. This research was carried out by the Glagah Consortium bioflocculation using Anabaena sp. and Navicula sp., which had never been done before. The study aims to study the effect of the mixing ratio on the flocculation rate, carbohydrates, and lipid content of the Glagah Consortium. The consortium uses Anabaena sp. and Navicula sp. as bioflocculants. Glagah and Anabaena sp. consortium was cultured in Bold Basal Medium, while Navicula sp. was cultured in F/2 medium. Cell density was measured every 24 hr for 8 days with a hemocytometer. The cultures were harvested in the stationary phase, then mixed between non-flocculated microalgae (Glagah Consortium) and flocculated microalgae (Anabaena sp., Navicula sp.) in a ratio of 1:1, 1:0.5, and 1:0.25 for 24 hr. Bioflocculation was measured by spectrophotometer at 750 nm 0 and 24 hr after mixing. Carbohydrate levels were measured using the phenol sulfuric acid method, while lipid measurements were performed using the Bligh and Dyer method. The addition of Anabaena sp. and Navicula sp. as bioflocculant in Glagah Consortium culture results in an increase in flocculation rate with an effective ratio of 1:0.25 for Anabaena sp. (81%) and 1:1 for Navicula sp. (95%). Mixing of Anabaena sp. and Glagah Consortium results in carbon source competition, reducing carbohydrate content at higher mixing ratios (0.172, 0.364, and 0.500 mg/ml on 1, 1:0.5, and 1:0.25) while increasing lipid content as a result of lipid production in stationary phase (highest on ratio 1:1 = 0.011 mg/ml). Navicula sp. and Glagah Consortium mixture caused no significant changes to carbohydrate content but showed an increased amount of lipid at all ratios as a result of osmotic stress on Glagah Consortium from saline F/2 medium (highest on ratio 1:1 = 0.162 mg/ml).

  • Amin, S.A., Parker, M. S., & Armbrust, E. V. (2012). Interactions between diatoms and bacteria. Microbiology and Molecular Biology Reviews, 76(3), 667-684.

  • Barros, A.I., Gonçalves, A.L., Simões, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489-1500.

  • Behl, S., Donval, A., & Stiborb, H. (2011). The relative importance of species diversity and functional group diversity on carbon uptake in phytoplankton communities. Limnology and Oceanography, 56(2), 683-694.

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917.

  • Bold, H. C. (1949). The morphology of Chlamydomonas chlamydogama, sp. Nov. Bulletin of the Torrey Botanical Club, 76(2), 101-108.

  • Chalid, S. Y., Amini, S., & Lestari, S. D. (2010). Kultivasi Chlorella sp. pada media tumbuh yang diperkaya dengan pupuk anorganik dan soil extract [Cultivation of Chlorella sp. on growing media enriched with inorganic fertilizers and soil extract]. Jurnal Kimia Valensi, 1(6), 398-404.

  • Congestri, R., & Albertano, P. (2011). Benthic diatoms in biofilm culture. In. J. Seckbach & P. Kociolek (Eds.), The diatom world: Cellular origin, life in extreme habitats and astrobiology (Vol. 19, pp. 227-243). Springer.

  • Cruz, D., Vasconcelos, V., Pierre, G., Michaud, P., & Delattre, C. (2020). Exopolysaccharides from Cyanobacteria: Strategies for bioprocess development. Applied Sciences, 10(11), 3763.

  • Domozych, D. S., Ciancia, M., Fangel, J. U., Mikkelsen, M. D., Ulvskov, P., & Willats, W. G. T. (2012). The cell walls of green algae: A journey through evolution and diversity. Frontiers in Plant Science, 3, 82.

  • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.

  • Fachrullah, M. R. (2011). Laju pertumbuhan mikroalga penghasil biofuel jenis Chlorella sp. dan Nanochloropsis sp. yang dikultivasi menggunakan air limbah hasil penambangan timah di Pulau Bangka [The growth rate of microalgae producing biofuels Chlorella sp. and Nanochloropsis sp., which is cultivated using wastewater from tin mining on Bangka Island] [Master’s thesis, IPB University]. IPB University Scientific Repository.

  • Fuentes, J. L., Garbayo, I., Cuaresma, M., Montero, Z., González-del-Valle, M., & Vilchez, C. (2016). Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14(5), 100.

  • Gangl, D., Zelder, J. A., Rajakumar, P. D., Martinez, E. M. R., Riseley, A., Wlodarczyk, A., Purton,S., Sukaragi, Y., Howe, C. J., Jensen, P. E., & Robinson, C. (2015). Biotechnological exploitation of microalgae. Journal of Experimental Botany, 66(22), 6975- 6990.

  • Gómez-Ramírez, A. L., Enriquez-Ocaña, L. F., Miranda-Baeza, A., Esquivel, B.C., López-Elías, J. A., & Martínez-Córdova, L. R. (2019). Biofilm-forming capacity of two benthic microalgae, Navicula incerta and Navicula sp., on three substrates (Naviculales: Naviculaceae). Revista de Biologia Tropical, 67(3), 599-607.

  • Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith & M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 29-60). Springer.

  • Gupta, S. K., Kumar, N. M., Guldhe, A., Ansari, F. A., Rawat, I., Nasr, M., & Bux, F. (2018). Wastewater to biofuel: Comprehensive evaluation of various flocculants on biochemical composition and yield of microalgae. Ecological Engineering, 117, 62-68.

  • Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160-186.

  • Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A., & Chang, J.-S. (2012). Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, 135, 157-165.

  • Jiménez, C., Cossı́o, B. R., Labella, D., & Niell, F. F. (2003). The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture, 217(1-4), 179-190.

  • Klock, J.-H., Wieland, A., Seifert, R., & Michaelis, W. (2007). Extracellular polymeric substances (EPS) from cyanobacterial mats: Characterisation and isolation method optimisation. Marine Biology, 152, 1077-1085.

  • Lawijaya, E. (2022). Pemanenan Konsorsium Glagah menggunakan Anabaena sp. dan Navicula sp. sebagai bioflokulan [Harvesting the Glagah Consortium using Anabaena sp. and Navicula sp. as the bioflocculant] [Unpublished Undergraduate thesis]. Universitas Gadjah Mada.

  • Li, Y., Xu, Y., Song, R., Tian, C., Liu, L. Zheng, T., & Wang, H. (2018). Flocculation characteristics of a bioflocculant produced by the actinomycete Streptomycetes sp. Hsn06 on microalgae biomass. BMC Biotechnology, 18, 58.

  • Li, Z., Liu, Y., Zhou, T., Cao, L., Cai, Y., Wang, Y., Cui, X., Yan, H., Ruan, R., & Zhang, Q. (2022). Effect of culture conditions on the performance or Arthrospora platensis and its production of exopolysaccharides. Foods, 11(14), 2020.

  • Lutfi, M., Nugroho, W. A., Fridayetsu, W. P., Susilo, B., Pulmar, C., & Sandra, S. (2019). Bioflocculation of two species of microalgae by exopolysaccharide of Bacillus subtilis. Nature Environment and Pollution Technology, 18(1), 167-173.

  • Matter, I. A., Bui, V. K. H., Jung, M., Seo, J. Y., Kim, Y.-E., Lee, Y.-C., & Oh, Y.-K. (2019). Flocculation harvesting techniques for microalgae: A review. Applied Sciences, 9(15), 3069.

  • Moreira, J. B., Kutzler, S. G., Bezerra, P. Q. M., Cassuriaga, A. P. A., Zaparoli, M. M., da Silva, J. L. V., Costa, J. A. V., & de Morais, M. G. (2022). Recent advances of microalgae exopolysaccharides for application as bioflocculants. Polysaccarides, 3(1), 264-276.

  • Novaryatiin, S. (2011). Isolasi dan karakterisasi potensi biodiesel mikroalga air tawar yang dikoleksi dari beberapa perairan umum sekitar Tangerang dan Bogor [Isolation and characterization of potential freshwater microalgae biodiesel collected from several public waters around Tangerang and Bogor] [Doctoral thesis, Universitas Al Azhar Indonesia]. Repository Digital Universitas Al Azhar Indonesia.

  • Nugroho, C. (2006). Efek Pb terhadap laju pertumbuhan dan biomassa Spirulina platensis [Effect of Pb on growth rate and biomass of Spirulina platensis]. [Unpublished Master’s thesis]. Universitas Gadjah Mada.

  • Pandit, P. R., Fulekar, M. H., & Karuna, M. S. L. (2017). Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environmental Science and Pollution Research, 24, 13437-13451.

  • Rahman, K. M. (2020). Food and high value products from microalgae: Market opportunities and challenges. In M. D. Alam, J. L. Xu, & Z. Wang (Eds.), Microalgae biotechnology for food, health and high value products (pp. 3-27). Springer.

  • Rahmawati, B., Ilmi, M., Budiman, A., & Suyono, E. A. (2020). Screening of IAA production on the interaction of microalgae and bacteria in the Glagah Consortium. Biosciences Biotechnology Research Asia, 17(1), 45-52.

  • Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444-467.

  • Refaay, D. A., Abdel-Hamid, M. I., Alyamani, A. A., Mougib, M. A., Ahmed, D. M., Negm, A., Mowafy, A. M., Ibrahim, A. A., & Mahmoud, R. M. (2022). Growth optimization and secondary metabolites evaluation of Anabaena variabilis for acetylcholinesterase inhibition activity. Plants, 11(6), 735.

  • Sadaatkhah, A., Sobhanian, H., Zoufan, P., Amini, F., & Soltani, N. (2020). Interaction of nitrogen and silicate fluctuations with salt stress on growth, and lipid production in Navicula sp. Iranian Journal of Fisheries Sciences, 19(6), 3310-3326.

  • Salim, S., Bosma, R., Vermuë, M. H., & Wijffels, R. H. (2011). Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 23, 849-855.

  • Salim, S., Vermuë, M. H., & Wijffels, R. H. (2012). Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresource Technology, 118, 49-55.

  • Sayanova O., Mimouni, V., Ulmann, L., Morant-Manceau, A., Pasquet, V., Schofs, B., & Napier, J. A. (2017). Modulation of lipid biosynthesis by stress in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160407.

  • Seckbach, J., & Kociolek, J. P. (Eds.). (2011). The diatom world. Springer.

  • Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 102(1), 26-34.

  • Singh, G., & Patidar, S. K. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217, 499-508.

  • Suantika., Pingkan, G., & Yusuf. (2009). Pengaruh kepadatan awal inokulum terhadap kualitas kulturv Chaetoceros gracilis (Schuut) pada sistem batch [Effect of initial inoculum density on culture quality of Chaetoceros gracilis (Schuut) in batch system] [Unpublished Master’s thesis]. Institut Teknologi Bandung.

  • Sudibyo, H., Pradana, Y. S., Samudra, T. T., Budiman, A., Indarto, I., & Suyono, E. A. (2017). Study of cultivation under different colors of light and growth kinetic study of Chlorella zofingiensis Dönz for biofuel production. Energy Procedia, 105, 270-276.

  • Suyono, E. A., Fahrunnida., Nopitasari, S., & Utama, I. V. (2016). Identification of microalgae species and lipid profiling of Glagah consortium for biodiesel development from local marine resource. ARPN Journal of Engineering and Applied Sciences, 11(16), 9970-9973.

  • Suyono, E. A., Haryadi, W., Zusron, M., Nuhamunada, M., Rahayu, S., & Nugroho, A. P. (2015). The effect of salinity on growth, dry weight and lipid content of the mixed microalgae culture isolated from Glagah as biodiesel substrate. Journal of Life Sciences, 9, 229-233.

  • Suyono, E. A., Retnaningrum, E., & Ajijah, N. (2018). Bacterial symbionts isolated from mixed microalgae culture of Glagah strains. International Journal of Agriculture and Biology, 20(1), 33-36.

  • Tiwari, M. O., Khangngembam, R., Shamjetshabam, M., Sharma, A. S., Oinam, G., & Brand, J. J. (2015). Characterization and optimization of bioflocculant exopolysaccharide production by cyanobacteria isolate Glagah BTA97 and Anabaena sp. BTA990 in culture conditions. Applied Biochemistry Biotechnology, 176, 1950-1963.

  • Yen, H.-W., Hu, I.-C., Chen, C.-Y., Ho, S.-H., Lee, D.-J., & Chang, J.-S. (2013). Microalgae-based biorefinery - From biofuels to natural products Hong-Wei. Bioresource Technology, 135, 166-174.