Home / Regular Issue / JSSH Vol. 31 (2) Mar. 2023 / JST-3600-2022

 

The Predictive Ability of Total Genotype Score and Serum Metabolite Markers in Power-Based Sports Performance Following Different Strength Training Intensities — A Pilot Study

Elin Elisa Khairul, Wan Atiyyah Ab Wahab, Lay Kek Teh, Mohd Zaki Salleh, Mohd Salleh Rofiee, Raja Mohammed Firhad Raja Azidin and Sarina Md. Yusof

Pertanika Journal of Social Science and Humanities, Volume 31, Issue 2, March 2023

DOI: https://doi.org/10.47836/pjst.31.2.23

Keywords: Genetics, metabolomics, single nucleotide polymorphism, strength training, training response

Published on: 20 March 2023

Muscular power is one of the factors that contribute to an athlete’s performance. This study aimed to explore the predictive ability of total genotype score (TGS) and serum metabolite markers in power-based sports performance following different strength training (ST) intensities. We recruited 15 novice male field hockey players (age = 16.27 ± .12 years old, body mass index = 22.57 ± 2.21 kg/m2) and allocated them to; high-intensity strength training (HIST, n=5), moderate intensity strength (MIST, n=5), and control group (C, n=5). Both training groups completed an eight-week ST intervention. Pre- and post-training muscular power (vertical jump) was measured. The participants were genotyped for; ACE (rs1799752), ACTN3 (rs1815739), ADRB3 (rs4994), AGT (rs699), BDKRB2 (rs1799722), PPARA (rs4253778), PPARGC1A (rs8192678), TRHR (rs7832552), and VEGF (rs1870377). TGS was calculated to annotate for strength-power (STP) and endurance (END) qualities. Subsequently, serum metabolomics analysis was conducted using Liquid chromatography-mass spectrometry Quadrupole-Time-of-Flight (LC-MS QTOF) to profile differentially expressed metabolite changes induced by training. Multiple regression analysis was conducted to explore the ability of TGS and differentially expressed metabolite markers to predict muscular power changes following the intervention. Multiple Regression revealed that only TGS STP might be a significant predictor of muscular power changes following MIST (adjusted R2=.906, p<.05). Additionally, ST also resulted in significant muscular power improvement (p<.05) and perturbation of the sphingolipid metabolism pathway (p<.05). Therefore, selected gene variants may influence muscular power. Therefore, STP TGS might be able to predict muscular power changes following MIST.

  • Ahmetov, I. I., Egorova, E. S., Gabdrakhmanova, L. J., & Fedotovskaya, O. N. (2016). Genes and athletic performance: An update. Medicine and Sport Science, 61, 41-54. https://doi.org/10.1159/000445240

  • Amato, A., Messina, G., Contrò, V., Sacco, A., & Proia, P. (2018). Total genetic score: An instrument to improve the performance in the elite athletes. Acta Medica Mediterranea, 34(6), 1857-1862. https://doi.org/10.109193/0393-6384_2018_6_287

  • Assuncao, A. R., Bottaro, M., Ferreira-Junior, J. B., Izquierdo, M., Cadore, E. L., & Gentil, P. (2016). The chronic effects of low- and high-intensity resistance training on muscular fitness in adolescents. Public Library of Science, 11(8), 4-7. https://doi.org/10.1371/journal.pone.0160650

  • Astorino, T. A., Tam, P. A., Rietschel, J. C., Johnson, S. M., & Freedman, T. P. (2004). Changes in physical fitness parameters during a competitive field hockey season. Journal of Strength and Conditioning Research, 18(4), 850-854. https://doi.org/10.1519/13723.1

  • Bergman, B. C., Brozinick, J. T., Strauss, A., Bacon, S., Kerege, A., Bui, H. H., Sanders, P., Siddall, P., Kuo, M. S., & Perreault, L. (2015). Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans. American Journal of Physiology-Endocrinology and Metabolism, 309(4), E398-E408. https://doi.org/10.1152/ajpendo.00134.2015

  • Bishop, C., Brazier, J., Cree, J., Turner, A. N., & Anthony, T. (2015). A needs analysis and testing battery for field hockey. Professional Strength and Conditioning, 36, 15-36.

  • Christou, M., Smilios, I., Sotiropoulos, K., Volaklis, K., Pilianidis, T., & Tokmakidis, S. P. (2006). Effects of resistance training on the physical capacities of adolescent soccer players. Journal of Strength and Conditioning Research, 20(4), 783-791. https://doi.org/10.1519/R-17254.1

  • de la Iglesia, R., Espinosa-Salinas, I., Lopez-Silvarrey, F. J., Ramos-Alvarez, J. J., Segovia, J. C., Colmenarejo, G., Borregon-Rivilla, E., Marcos-Pasero, H., Aguilar-Aguilar, E., Loria-Kohen, V., Reglero, G., & Ramirez-de Molina, A. (2020). A potential endurance algorithm prediction in the field of sports performance. Frontiers in Genetics, 11, 1-11. https://doi.org/10.3389/fgene.2020.00711

  • Egorova, E. S., Borisova, A. V., Mustafina, L. J., Arkhipova, A. A., Gabbasov, R. T., Druzhevskaya, A. M., Astratenkova, I. V., & Ahmetov, I. I. (2014). The polygenic profile of Russian football players. Journal of Sports Sciences, 32(13), 1286-1293. https://doi.org/10.1080/02640414.2014.898853

  • Ibrahim Hassan. I., H. (2018). Relationship between strength, speed, and change direction performance in field hockey players. MOJ Sports Medicine, 2(1), 54-58. https://doi.org/10.15406/mojsm.2018.03.00046

  • Jones, N., Kiely, J., Suraci, B., Collins, D. J., Lorenzo, D. D., Pickering, C., & Grimaldi, K. A. (2016). A genetic-based algorithm for personalized resistance training. Biology of Sport, 33(2), 117-126. https://doi.org/10.5604/20831862.1198210

  • Juárez, D., González-Ravé, J. M., & Navarro, F. (2009). Effects of complex vs. non-complex training programs on lower body maximum strength and power. Isokinetics and Exercise Science, 17(4), 233-241. https://doi.org/10.3233/IES-2009-0359

  • Kelly, R. S., Kelly, M. P., & Kelly, P. (2020). Metabolomics, physical activity, exercise and health: A review of the current evidence. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(12), 1-17. https://doi.org/10.1016/j.bbadis.2020.165936

  • Kikuchi, N., Honma, H., & Nakazato, K. (2019). Effect of gene polymorphisms on sensitivity to resistance training. In D. Barh & I. Ahmetov (Eds.), Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions (pp. 189-209). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816193-7.00009-9

  • Klemp, A., Dolan, C., Quiles, J. M., Blanco, R., Zoeller, R. F., Graves, B. S., & Zourdos, M. C. (2016). Volume-equated high- and low-repetition daily undulating programming strategies produce similar hypertrophy and strength adaptations. Applied Physiology, Nutrition and Metabolism, 41(7), 699-705. https://doi.org/10.1139/apnm-2015-0707

  • Kobal, R., Loturco, I., Barroso, R., Gil, S., Cuniyochi, R. R., Ugrinowitsch, C., Roschel, H., & Tricoli, V. (2017). Effects of different combinations of strength, power, and plyometric training on the physical performance of elite young soccer players. Journal of Strength and Conditioning Research, 31(6), 1468-1476. https://doi.org/10.1519/JSC.0000000000001609

  • Konarski, J., Krzykała, M., Podgórski, T., Pawlak, M., Strzelczyk, R., & Malina, R. M. (2012). Variations in functional and morphological characteristics of elite polish field hockey players in a complete macrocycle. International Journal of Sports Science and Coaching, 7(3), 527-541. https://doi.org/10.1260/1747-9541.7.3.527

  • Laursen, P. B. (2010). Training for intense exercise performance: High-intensity or high-volume training? Scandinavian Journal of Medicine & Science in Sports, 20(Suppl. 2), 1-10. https://doi.org/10.1111/j.1600-0838.2010.01184.x

  • Lemmink, K. A. P. M., & Visscher, S. H. (2006). Role of energy systems in two intermittent field tests in women field hockey players. The Journal of Strength and Conditioning Research, 20(4), 682-688. https://doi.org/10.1519/R-17124.1

  • Lemos, R. S., Paz, G. A., Freitas Maia, M. de, Baptista da Silva, J., Lima, V. P., Brandão Pinto de Castro, J., & Miranda, H. (2017). Anthropometric and physical fitness parameters versus specific performance tests in Brazilian field hockey athletes: A pilot study. Biomedical Human Kinetics, 9(1), 57-63. https://doi.org/10.1515/bhk-2017-0009

  • Lesinski, M., Prieske, O., & Granacher, U. (2016). Effects and dose-response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. British Journal of Sports Medicine, 50(13), 781-795. https://doi.org/10.1136/bjsports-2015-095497

  • Mangine, G. T., Hoffman, J. R., Gonzalez, A. M., Townsend, J. R., Wells, A. J., Jajtner, A. R., Beyer, K. S., Boone, C. H., Miramonti, A. A., Wang, R., LaMonica, M. B., Fukuda, D. H., Ratamess, N. A., & Stout, J. R. (2015). The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiological Reports, 3(8), 1-17. https://doi.org/10.14814/phy2.12472

  • Massidda, M., Calò, C. M., Cięszczyk, P., Kikuchi, N., Ahmetov, I. I., & Williams, A. G. (2019). Genetics of team sports. In D. Barh & I. Ahmetov (Eds.) Sports, Exercise, and Nutritional Genomics (pp. 105-128). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816193-7.00005-1

  • McKinlay, B. J., Wallace, P., Dotan, R., Long, D., Tokuno, C., Gabriel, D. A., & Falk, B. (2018). Effects of plyometric and resistance training on muscle strength, explosiveness, and neuromuscular function in young adolescent soccer players. Journal of Strength and Conditioning Research, 32(11), 3039-3050. https://doi.org/10.1519/JSC.0000000000002428

  • Morville, T., Sahl, R. E., Moritz, T., Helge, J. W., & Clemmensen, C. (2020). Plasma metabolome profiling of resistance exercise and endurance exercise in humans. Cell Reports, 33(13), Article 108554. https://doi.org/10.1016/j.celrep.2020.108554

  • Murtagh, C. F., Brownlee, T. E., Rienzi, E., Roquero, S., Moreno, S., Huertas, G., Lugioratto, G., Baumert, P., Turner, D. C., Lee, D., Dickinson, P., Amber Lyon, K., Sheikhsaraf, B., Biyik, B., O’Boyle, A., Morgans, R., Massey, A., Drust, B., & Erskine, R. M. (2020). The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS ONE, 15(6 June), 1-24. https://doi.org/10.1371/journal.pone.0234458

  • Nikolova-Karakashian, M. N., & Reid, M. B. (2011). Sphingolipid metabolism, oxidant signaling, and contractile function of skeletal muscle. Antioxidants and Redox Signaling, 15(9), 2501-2517. https://doi.org/10.1089/ars.2011.3940

  • Pickering, C., Kiely, J., Grgic, J., Lucia, A., & Del Coso, J. (2019). Can genetic testing identify talent for sport? Genes, 12(2), 1-15. https://doi.org/10.3390/genes10120972

  • Pimenta, E. M., Coelho, D. B., Cruz, I. R., Morandi, R. F., Veneroso, C. E., De Azambuja Pussieldi, G., Carvalho, M. R. S., Silami-Garcia, E., & De Paz Fernández, J. A. (2012). The ACTN3 genotype in soccer players in response to acute eccentric training. European Journal of Applied Physiology, 112(4), 1495-1503. https://doi.org/10.1007/s00421-011-2109-7

  • Ruiz, J. R., Arteta, D., Buxens, A., Artieda, M., Gómez-Gallego, F., Santiago, C., Yvert, T., Moran, M., & Lucia, A. (2010). Can we identify a power-oriented polygenic profile? Journal of Applied Physiology, 108(3), 561-566. https://doi.org/10.1152/japplphysiol.01242.2009

  • Ruiz, J. R., Gómez-Gallego, F., Santiago, C., González-Freire, M., Verde, Z., Foster, C., & Lucia, A. (2009). Is there an optimum endurance polygenic profile? Journal of Physiology, 587(7), 1527-1534. https://doi.org/10.1113/jphysiol.2008.166645

  • Sarin, H. V., Ahtiainen, J. P., Hulmi, J. J., Ihalainen, J. K., Walker, S., Küüsmaa-Schildt, M., Perola, M., & Peltonen, H. (2019). Resistance training induces antiatherogenic effects on metabolomic pathways. Medicine and Science in Sports and Exercise, 51(9), 1866-1875. https://doi.org/10.1249/MSS.000000000000203

  • Sarzynski, M. A., Loos, R. J. F., Lucia, A., Pérusse, L., Roth, S. M., Wolfarth, B., Rankinen, T., & Bouchard, C. (2016). Advances in exercise, fitness, and performance genomics in 2015. Medicine and Science in Sports and Exercise, 48(10), 1906-1916. https://doi.org/10.1249/MSS.0000000000000982

  • Sayers, S. P., Harackiewicz, D. V, Harman, E. A., Frykman, P. N., & Rosenstein, M. T. (1999). Cross-validation of three jump power equations. Medicine and Science in Sports and Exercise, 31(4), 572-577. https://doi.org/10.1097/00005768-199904000-00013

  • Shepherd, S. O., Cocks, M., Tipton, K. D., Witard, O. C., Ranasinghe, A. M., Barker, T. A., Wagenmakers, A. J. M., & Shaw, C. S. (2014). Resistance training increases skeletal muscle oxidative capacity and net intramuscular triglyceride breakdown in type I and II fibres of sedentary males. Experimental Physiology, 99(6), 894-908. https://doi.org/10.1113/expphysiol.2014.078014

  • Suraci, B. R., Quigley, C., Thelwell, R. C., & Milligan, G. S. (2021). A comparison of training modality and total genotype scores to enhance sport-specific biomotor abilities in under 19 male soccer players. Journal of Strength and Conditioning Research, 35(1), 154-161. https://doi.org/10.1519/JSC.0000000000003299

  • Tanisawa, K., Wang, G., Seto, J., Verdouka, I., Twycross-Lewis, R., Karanikolou, A., Tanaka, M., Borjesson, M., Di Luigi, L., Dohi, M., Wolfarth, B., Swart, J., Bilzon, J. L. J., Badtieva, V., Papadopoulou, T., Casasco, M., Geistlinger, M., Bachl, N., Pigozzi, F., & Pitsiladis, Y. (2020). Sport and exercise genomics: The FIMS 2019 consensus statement update. British Journal of Sports Medicine, 54(16), 969-975. https://doi.org/10.1136/bjsports-2019-101532

  • Varillas-Delgado, D., Del Coso, J., Gutiérrez-Hellín, J., Aguilar-Navarro, M., Muñoz, A., Maestro, A., & Morencos, E. (2022). Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. European Journal of Applied Physiology, 122, 1811-1830. https://doi.org/10.1007/s00421-022-04945-z

  • Wetmore, A. B., Moquin, P. A., Carroll, K. M., Fry, A. C., Hornsby, W. G., & Stone, M. H. (2020). The effect of training status on adaptations to 11 weeks of block periodization training. Sports, 8(11), 1-12. 10.3390/sports8110145

  • Wishart, D. S. (2019). Metabolomics for investigating physiological and pathophysiological processes. Physiological Reviews, 99(4), 1819-1875. https://doi.org/10.1152/physrev.00035.2018

  • Yingling, V. R., Castro, D. A., Duong, J. T., Malpartida, F. J., Usher, J. R., & O, J. (2018). The reliability of vertical jump tests between the Vertec and My Jump phone application. PeerJ, 6(4), 1-13. https://doi.org/10.7717/peerj.4669

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-3600-2022

Download Full Article PDF

Share this article

Related Articles