PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Agrawal, R., & Wei, J. (1984). Hydrodemetalation of nickel and vanadium porphyrins. 1. Intrinsic kinetics. Industrial & Engineering Chemistry Process Design and Development, 23(3), 505-514. https://doi.org/10.1021/i200026a017

  • Ali, S. A., Suboyin, A., & Haj, H. B. (2018). Unconventional and conventional oil production impacts on oil price - Lessons learnt with glance to the future. Journal of Global Economics, 06(1), Article 1000286. https://doi.org/10.4172/2375-4389.1000286

  • Ameur, Z. O., & Husein, M. M. (2012). Salting-out induced aggregation for selective separation of vanadyl-oxide tetraphenyl-porphyrin from heavy oil. Energy & Fuels, 26(7), 4420-4425. https://doi.org/10.1021/ef300482h

  • Bara, J. E., Camper, D. E., Gin, D. L., & Noble, R. D. (2010). Room-temperature ionic liquids and composite materials: Platform technologies for CO 2 capture. Accounts of Chemical Research, 43(1), 152-159. https://doi.org/10.1021/ar9001747

  • Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society, 124(6), 926-927. https://doi.org/10.1021/ja017593d

  • Beni, A. A., & Esmaeili, A. (2020). Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environmental Technology & Innovation, 17, Article 100503. https://doi.org/10.1016/j.eti.2019.100503

  • Bonné, R. L. C., van Steenderen, P., & Moulijn, J. A. (2001). Hydrogenation of nickel and vanadyl tetraphenylporphyrin in absence of a catalyst: A kinetic study. Applied Catalysis A: General, 206(2), 171-181. https://doi.org/10.1016/S0926-860X(00)00587-1

  • Castañeda, L. C., Muñoz, J. A. D., & Ancheyta, J. (2014). Current situation of emerging technologies for upgrading of heavy oils. Catalysis Today, 220-222, 248-273. https://doi.org/10.1016/j.cattod.2013.05.016

  • Chen, H. J., & Massoth, F. E. (1988). Hydrodemetalation of vanadium and nickel porphyrins over sulfided cobalt-molybdenum/alumina catalyst. Industrial & Engineering Chemistry Research, 27(9), 1629-1639. https://doi.org/10.1021/ie00081a012

  • Dávila, M. J., Aparicio, S., Alcalde, R., García, B., and Leal, J. M. (2007). On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chemistry, 9(3), 221-232. https://doi.org/10.1039/B612177B.

  • Davis, Jr., J. H. & Fox, P. A. (2003). From curiosities to commodities: Ionic liquids begin the transition. Chemical Communications, 11, 1209-1212, https://doi.org/10.1039/b212788a.

  • Dobler, D., Schmidts, T., Klingenhöfer, I., & Runkel, F. (2013). Ionic liquids as ingredients in topical drug delivery systems. International Journal of Pharmaceutics, 441(1-2), 620-627. https://doi.org/10.1016/j.ijpharm.2012.10.035

  • Elektorowicz, M., & Muslat, Z. (2008). Removal of heavy metals from oil sludge using ion exchange textiles. Environmental Technology, 29(4), 393-399. https://doi.org/10.1080/09593330801984290

  • Fadeev, A. G., & Meagher, M. M. (2001). Opportunities for ionic liquids in recovery of biofuels. Chemical Communications, 3, 295-296. https://doi.org/10.1039/b006102f

  • Fauzi, A. H. M., & Amin, N. A. S. (2012). An overview of ionic liquids as solvents in biodiesel synthesis. Renewable and Sustainable Energy Reviews, 16(8), 5770-5786. https://doi.org/10.1016/j.rser.2012.06.022

  • Fleischer, E. B. (1970). Structure of porphyrins and metalloporphyrins. Accounts of Chemical Research, 3(3), 105-112. https://doi.org/10.1021/ar50027a004

  • Germani, R., Mancini, M., Savelli, G., & Spreti, N. (2007). Mercury extraction by ionic liquids: Temperature and alkyl chain length effect. Tetrahedron Letters, 48(10), 1767-1769. https://doi.org/10.1016/j.tetlet.2007.01.038

  • Hijo, A. A. C. T., Maximo, G. J., Costa, M. C., Batista, E. A. C., & Meirelles, A. J. A. (2016). Applications of ionic liquids in the food and bioproducts industries. ACS Sustainable Chemistry & Engineering, 4(10), 5347-5369. https://doi.org/10.1021/acssuschemeng.6b00560

  • Huddleston, J. G., Willauer, H. D., Swatloski, R. P., Visser, A. E., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chemical Communications. 16, 1765-1766. https://doi.org/10.1039/A803999B

  • Hung, C. W., & Wei, J. (1980). The kinetics of porphyrin hydrodemetallation. 1. Nickel compounds. Industrial & Engineering Chemistry Process Design and Development, 19(2), 250-257. https://doi.org/10.1021/i260074a009

  • Ikyereve, R. E., Nwankwo, C., & Mohammed, A. (2014). Selective removal of metal ions from crude oil using synthetic zeolites. International Journal of Scientific and Research Publications, 4(5), 411-413.

  • Jiménez, A. E., & Bermúdez, M. D. (2007). Ionic liquids as lubricants for steel-aluminum contacts at low and elevated temperatures. Tribology Letters, 26(1), 53-60. https://doi.org/10.1007/s11249-006-9182-9

  • Karadas, F., Atilhan, M., & Aparicio, S. (2010). Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy & Fuels, 24(11), 5817-5828. https://doi.org/10.1021/ef1011337

  • Khaidzir, S., Masri A. N., Ruslan, M. S. H., & Mutalib, M. I. A. (2021). Ultrasonic-assisted technique as a novel method for removal of naphthenic acid from model oil using piperidinium-based ionic liquids. ACS Omega, 6(14), 9629-9637.

  • Kumano, M., Yabutani, T., Motonaka, J., & Mishima, Y. (2006). Recovery and extraction of heavy metal ions using ionic liquid as green solvent. International Journal of Modern Physics B, 20(25n27), 4051-4056. https://doi.org/10.1142/S0217979206040842

  • Liu, C. Z., Wang, F., Stiles, A. R., & Guo, C. (2012). Ionic liquids for biofuel production: Opportunities and challenges. Applied Energy, 92, 406-414. https://doi.org/10.1016/j.apenergy.2011.11.031

  • Mandal, P., & Alias, M. A. (2017). Investigation of asphaltene under subcritical water treatment. International Journal of Materials, Mechanics and Manufacturing, 5(1), 11-15. https://doi.org/10.18178/ijmmm.2017.5.1.279

  • Mandal, P. C., Goto, M., & Sasaki, M. (2014). Removal of nickel and vanadium from heavy oils using supercritical water. Journal of the Japan Petroleum Institute, 57(1), 18-28. https://doi.org/10.1627/jpi.57.18

  • Mandal, P. C., Wahyudiono, Sasaki, M., & Goto, M. (2011). Nickel removal from nickel-5,10,15,20-tetraphenylporphine using supercritical water in absence of catalyst: A basic study. Journal of Hazardous Materials, 187(1-3), 600-603. https://doi.org/10.1016/j.jhazmat.2011.01.059

  • Mandal, P. C., Wahyudiono, Sasaki, M., & Goto, M. (2012a). Non-catalytic vanadium removal from vanadyl etioporphyrin (VO-EP) using a mixed solvent of supercritical water and toluene: A kinetic study. Fuel, 92(1), 288-294. https://doi.org/10.1016/j.fuel.2011.07.002

  • Mandal, P. C., Wahyudiono, Sasaki, M., & Goto, M. (2012b). Nickel removal from nickel etioporphyrin (Ni-EP) using supercritical water in the absence of catalyst. Fuel Processing Technology, 104, 67-72. https://doi.org/10.1016/j.fuproc.2011.07.004

  • Manjare, S., & Dhingra, K. (2019). Supercritical fluids in separation and purification: A review. Materials Science for Energy Technologies, 2(3), 463-484. https://doi.org/10.1016/j.mset.2019.04.005

  • Moniruzzaman, M., Tahara, Y., Tamura, M., Kamiya, N., & Goto, M. (2010). Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chemical Communications, 46(9), Article 1452. https://doi.org/10.1039/b907462g

  • Monti, D., Egiziano, E., Burgalassi, S., Chetoni, P., Chiappe, C., Sanzone, A., & Tampucci, S. (2017). Ionic liquids as potential enhancers for transdermal drug delivery. International Journal of Pharmaceutics, 516(1-2), 45-51. https://doi.org/10.1016/j.ijpharm.2016.11.020

  • Muhammad, N., Elsheikh, Y. A., Mutalib, M. I. A., Bazmi, A. A., Khan, R. A., Khan, H., Rafiq, S., Man, Z., & khan, I. (2015). An overview of the role of ionic liquids in biodiesel reactions. Journal of Industrial and Engineering Chemistry, 21, 1-10. https://doi.org/10.1016/j.jiec.2014.01.046

  • Painter, P., Veytsman, B., & Youtcheff, J. (2015). Guide to asphaltene solubility. Energy & Fuels, 29(5), 2951-2961. https://doi.org/10.1021/ef502918t

  • Qu, J., Blau, P. J., Dai, S., Luo, H., & Meyer, H. M. (2009). Ionic liquids as novel lubricants and additives for diesel engine applications. Tribology Letters, 35(3), 181-189. https://doi.org/10.1007/s11249-009-9447-1

  • Ramdin, M., de Loos, T. W., & Vlugt, T. J. H. (2012). State-of-the-art of CO2 capture with ionic liquids. Industrial & Engineering Chemistry Research, 51(24), 8149-8177. https://doi.org/10.1021/ie3003705

  • Rana, M. S., Sámano, V., Ancheyta, J., & Diaz, J. A. I. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86(9), 1216-1231. https://doi.org/10.1016/j.fuel.2006.08.004

  • Salehizadeh, H., Mousavi, M., Hatamipour, S., & Kermanshahi, K. (2007). Microbial demetallization of crude oil using Aspergillus sp.: Vanadium oxide octaethyl porphyrin (VOOEP) as a model of metallic petroporphyrins. Iranian Journal of Biotechnology, 5(4), 226-231.

  • Santos, R. G., Loh, W., Bannwart, A. C., & Trevisan, O. V. (2014). An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering, 31(3), 571-590. https://doi.org/10.1590/0104-6632.20140313s00001853

  • Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. S. M. (2019). Integrated remediation processes toward heavy metal removal/recovery from various environments - A review. Frontiers in Environmental Science, 7, 1-15. https://doi.org/10.3389/fenvs.2019.00066

  • Siriwardana, A. I. (2015). Industrial applications of ionic liquids. In A. A. J. Torriero (Ed.), Electrochemistry in Ionic Liquids (pp. 563-603). Springer International Publishing. https://doi.org/10.1007/978-3-319-15132-8_20

  • Sowmiah, S., Srinivasadesikan, V., Tseng, M. C., & Chu, Y. H. (2009). On the chemical stabilities of ionic liquids. Molecules, 14(9), 3780-3813. https://doi.org/10.3390/molecules14093780

  • Sun, X., Luo, H., & Dai, S. (2012). Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chemical Reviews, 112(4), 2100-2128. https://doi.org/10.1021/cr200193x

  • Tavakoli, O., & Yoshida, H. (2005). Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environmental Science & Technology, 39(7), 2357-2363. https://doi.org/10.1021/es030713s

  • Trucillo, P., Campardelli, R., Scognamiglio, M., & Reverchon, E. (2019). Control of liposomes diameter at micrometric and nanometric level using a supercritical assisted technique. Journal of CO2 Utilization, 32, 119-127. https://doi.org/10.1016/j.jcou.2019.04.014

  • Vancov, T., Alston, A. S., Brown, T., & McIntosh, S. (2012). Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 45, 1-6. https://doi.org/10.1016/j.renene.2012.02.033

  • Visser, A. E., Swatloski, R. P., Reichert, W. M., Davis Jr., J. H., Rogers, R. D., Mayton, R., Sheff, S., & Wierzbicki, A. (2001). Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chemical Communications, 1, 135-136. https://doi.org/10.1039/b008041l

  • Wang, S., Xu, X., Yang, J., & Gao, J. (2011). Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation. Fuel Processing Technology, 92(3), 486-492. https://doi.org/10.1016/j.fuproc.2010.11.001

  • Welter, K., Salazar, E., Balladores, Y., Márquez, O. P., Márquez, J., & Martínez, Y. (2009). Electrochemical removal of metals from crude oil samples. Fuel Processing Technology, 90(2), 212-221. https://doi.org/10.1016/j.fuproc.2008.09.004

  • Yuan, J., Yang, Y., Zhou, X., Ge, Y., & Zeng, Q. (2019). A new method for simultaneous removal of heavy metals and harmful organics from rape seed meal from metal-contaminated farmland. Separation and Purification Technology, 210, 1001-1007. https://doi.org/10.1016/j.seppur.2018.09.056

  • Zhao, X., Xu, C., & Shi, Q. (2015). Porphyrins in heavy petroleums: A review. In C. Xu & Q. Shi (Eds.), Structure and Modeling of Complex Petroleum Mixtures (Vol. 168: pp. 39-70). Springer International Publishing. https://doi.org/10.1007/430_2015_189

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

J

Download Full Article PDF

Share this article

Recent Articles