PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abbas, A., Khan, S., Hussain, N., Hanjra, M. A., & Akbar, S. (2013). Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth, 55-57, 43-52. https://doi.org/10.1016/j.pce.2010.12.004

  • Abd-Alla, M. H., Nafady, N. A., Bashandy, S. R., & Hassan, A. A. (2019). Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere, 10, 100148. https://doi.org/10.1016/j.rhisph.2019.100148

  • Abubakar, A., Ishak, M. Y., Bakar, A. A., Uddin, M. K., Ahmad, M. H., Seman, I. A., Ching, L. M., Ahmad, A., & Hashim, Z. (2023). Geospatial simulation and mapping of climate suitability for oil palm (Elaeis guineensis) production in Peninsular Malaysia using GIS/remote sensing techniques and analytic hierarchy process. Modeling Earth Systems and Environment, 9, 73-96. https://doi.org/10.1007/s40808-022-01465-9

  • Agami, R. A., Alamri, S. A. M., Abd El-Mageed, T. A., Abousekken, M. S. M., & Hashem, M. (2018). Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agricultural Water Management, 210, 261-270. https://doi.org/10.1016/j.agwat.2018.08.034

  • Ali, Y., Aslam, Z., Ashraf, M. Y., & Tahir, G. R. (2004). Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science and Technology, 1, 221-225. https://doi.org/10.1007/BF03325836

  • Aminuddin, B. Y., Ghulam, M. H., Wan Abdullah, W. Y., Zulkefli, M., & Salama, R. B. (2005). Sustainability of current agricultural practices in the Cameron Highlands, Malaysia. Water, Air, and Soil Pollution: Focus, 5, 89-101. https://doi.org/10.1007/s11267-005-7405-y

  • Amir, H. G., Shamsuddin, Z. H., Halimi, M. S., Ramlan, M. F., & Marziah, M. (2001). Effects of Azospirillum inoculation on N2 fixation and growth of oil palm plantlets at nursery stage. Journal of Oil Palm Research, 13(1), 42-49.

  • Apse, M. P., & Blumwald, E. (2002). Engineering salt tolerance in plants. Current Opinion in Biotechnology, 13(2), 146-150. https://doi.org/10.1016/S0958-1669(02)00298-7

  • Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants, 12(12), 2253. https://doi.org/10.3390/plants12122253

  • Coombs, J., Hind, G., Leegood, R. C., Tieszen, L. L., & Vonshak, A. (1985). Analytical techniques. In J. Coombs, D. O. Hall, S. P. Long, & J. M. O. Scurlock (Eds.), Techniques in bioproductivity and photosynthesis (2nd ed., pp. 219-228). Pergamon. https://doi.org/10.1016/B978-0-08-031999-5.50027-3

  • Egamberdieva, D., & Kucharova, Z. (2009). Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 45, 563-571. https://doi.org/10.1007/s00374-009-0366-y

  • Egamberdieva, D., Davranov, K., Wirth, S., Hashem, A., & Abd_Allah, E. F. (2017). Impact of soil salinity on the plant-growth-promoting and biological control abilities of root associated bacteria. Saudi Journal of Biological Sciences, 24(7), 1601-1608. https://doi.org/10.1016/j.sjbs.2017.07.004

  • El Sayed, H. E. S. A. (2011). Influence of salinity stress on growth parameters, photosynthetic activity, and cytological studies of Zea mays L. plant using hydrogel polymer. Agriculture and Biology Journal of North America, 2(6), 907-920. https://doi.org/10.5251/abjna.2011.2.6.907.920

  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55(396), 307-319. https://doi.org/10.1093/jxb/erh003

  • Gechev, T., & Petrov, V. (2020). Reactive oxygen species and abiotic stress in plants. International Journal of Molecular Sciences, 21(20), 7433. https://doi.org/10.3390/ijms21207433

  • Genc, Y., Taylor, J., Lyons, G., Li, Y., Cheong, J., Appelbee, M., Oldach, K., & Sutton, T. (2019). Bread wheat with high salinity and sodicity tolerance. Frontiers in Plant Science, 10, 1280. https://doi.org/10.3389/fpls.2019.01280

  • Hasnat, G. N. T., Kabir, M. A., & Hossain, M. A. (2018). Major environmental issues and problems of South Asia, particularly Bangladesh. In C. Hussain (Ed.), Handbook of environmental materials management (pp. 1-40). Springer. https://doi.org/10.1007/978-3-319-58538-3_7-1

  • Heidari, M. (2012). Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. African Journal of Biotechnology, 11(2), 379-384. https://doi.org/10.5897/AJB11.2572

  • Herman, T., Murchie, E. H., & Warsi, A. A. (2015). Rice production and climate change: A case study of malaysian rice. Pertanika Journal of Tropical Agricultural Science, 38(3), 321-328.

  • Kalhoro, N. A., Rajpar, I., Kalhoro, S. A., Ali, A., Raza, S., Ahmed, M., Kalhoro, F. A., Ramzan, M., & Wahid, F. (2016). Effect of salt stress on the growth and yield of wheat (Triticum aestivum L.). American Journal of Plant Sciences, 7, 2257-2271. https://doi.org/10.4236/ajps.2016.715199

  • Kato, M., & Shimizu, S. (1985). Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant and Cell Physiology, 26(7), 1291-1301. https://doi.org/10.1093/oxfordjournals.pcp.a077029

  • Kesawat, M. S., Satheesh, N., Kherawat, B. S., Kumar, A., Kim, H.-U., Chung, S.-M., & Kumar, M. (2023). Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules - Current perspectives and future directions. Plants, 12(4), 864. https://doi.org/10.3390/plants12040864

  • Khasanov, S., Oymatov, R., & Kulmatov, R. (2023). Canopy temperature: As an indicator of soil salinity (a case study in Syrdarya province, Uzbekistan). In IOP Conference Series: Earth and Environmental Science (Vol. 1142, No. 1, p. 012109). IOP Publishing. https://doi.org/10.1088/1755-1315/1142/1/012109

  • Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. https://doi.org/10.1093/jxb/err460

  • Li, Y.-T., Li, Y., Li, Y.-N., Liang, Y., Sun, Q., Li, G., Liu, P., Zhang, Z.-S., & Gao, H.-Y. (2020). Dynamic light caused less photosynthetic suppression, rather than more, under nitrogen deficit conditions than under sufficient nitrogen supply conditions in soybean. BMC Plant Biology, 20, 339. https://doi.org/10.1186/s12870-020-02516-y

  • López, S. M. Y., Sánchez, M. D. M., Pastorino, G. N., Franco, M. E. E., García, N. T., & Balatti, P. A. (2018). Nodulation and delayed nodule senescence: Strategies of two Bradyrhizobium japonicum isolates with high capacity to fix nitrogen. Current Microbiology, 75, 997-1005. https://doi.org/10.1007/s00284-018-1478-0

  • Masarmi, A. G., Solouki, M., Fakheri, B., Kalaji, H. M., Mahgdingad, N., Golkari, S., Telesiński, A., Lamlom, S. F., Kociel, H., & Yousef, A. F. (2023). Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress. PLOS One, 18(3), e0282606. https://doi.org/10.1371/journal.pone.0282606

  • Mooney, H. A., Fichtner, K., & Schulze, E.-D. (1995). Growth, photosynthesis, and storage of carbohydrates and nitrogen in Phaseolus lunatus in relation to resource availability. Oecologia, 104, 17-23. https://doi.org/10.1007/BF00365557

  • Muhamad Hassan, M. H., Awang, Y., Jaafar, J. N., Sayuti, Z., Othman Ghani, M. N., Mohamad Sabdin, Z. H., & Nazli, M. H. (2022). Effects of salinity sources on growth, physiological process, yield, and fruit quality of grafted rock melon (Cucumis melo L.). Pertanika Journal of Tropical Agricultural Science, 45(4), 919-941. https://doi.org/10.47836/pjtas.45.4.05

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

  • Naing, A. H., & Kim, C. K. (2021). Abiotic stress‐induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum, 172(3), 1711-1723. https://doi.org/10.1111/ppl.13373

  • Neufeld, H. S., Chappelka, A. H., Somers, G. L., Burkey, K. O., Davison, A. W., & Finkelstein, P. L. (2006). Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower. Photosynthesis Research, 87, 281-286. https://doi.org/10.1007/s11120-005-9008-x

  • Nordin, M. N., Lah, M. K., & Jahan, M. S. (2015). Effects of different salinity levels on rice production. Australian Journal of Basic and Applied Sciences, 9, 524-530.

  • Nounjan, N., Mahakham, W., Siangliw, J. L., Toojinda, T., & Theerakulpisut, P. (2020). Chlorophyll retention and high photosynthetic performance contribute to salinity tolerance in rice carrying drought tolerance quantitative trait loci (QTLs). Agriculture, 10(12), 620. https://doi.org/10.3390/agriculture10120620

  • Ojo, O. A. (2001). Assessment of nodulation of Mucuna pruriens by promiscuous indigenous rhizobia in the moist savanna zone of Nigeria. World Journal of Microbiology and Biotechnology, 17, 429-432. https://doi.org/10.1023/A:1016769412363

  • Omoto, E., Taniguchi, M., & Miyake, H. (2012). Adaptation responses in C4 photosynthesis of maize under salinity. Journal of Plant Physiology, 169(5), 469-477. https://doi.org/10.1016/j.jplph.2011.11.009

  • Paramananthan, S. (2013). Managing marginal soils for sustainable growth of oil palms in the tropics. Journal of Oil Palm, Environment and Health, 4, 1-16. https://doi.org/10.5366/jope.2013.1

  • Piccoli, P., & Bottini, R. (2013). Abiotic stress tolerance induced by endophytic PGPR. In R. Aroca (Ed.), Symbiotic endophytes (Vol. 37, pp. 151-163). Springer. https://doi.org/10.1007/978-3-642-39317-4_8

  • Rajabi Dehnavi, A., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6), 859. https://doi.org/10.3390/agronomy10060859

  • Rao, D. L. N., Giller, K. E., Yeo, A. R., & Flowers, T. J. (2002). The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Annals of Botany, 89(5), 563-570. https://doi.org/10.1093/aob/mcf097

  • Reis, V. M., Baldani, V. L. D., & Baldani, J. I. (2015). Isolation, identification, and biochemical characterization of Azospirillum spp. and other nitrogen-fixing bacteria. In F. Cassán, Y. Okon, & C. Creus (Eds.), Handbook for Azospirillum (pp. 3-26). Springer. https://doi.org/10.1007/978-3-319-06542-7_1

  • Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, 17(1), 34-40. https://doi.org/10.7537/marsnsj170119.06

  • Sahbeni, G., Ngabire, M., Musyimi, P. K., & Székely, B. (2023). Challenges and opportunities in remote sensing for soil salinization mapping and monitoring: A review. Remote Sensing, 15(10), 2540. https://doi.org/10.3390/rs15102540

  • Schwabe, K. A., Kan, I., & Knapp, K. C. (2006). Drain water management for salinity mitigation in irrigated agriculture. American Journal of Agricultural Economics, 88(1), 133-149. https://doi.org/10.1111/j.1467-8276.2006.00843.x

  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Introduction to soil salinity, sodicity, and diagnostics techniques. In Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 1-42). Springer. https://doi.org/10.1007/978-3-319-96190-3_1

  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001

  • Shultana, R., Kee Zuan, A. T., Yusop, M. R., Saud, H. M., & El-Shehawi, A. M. (2021). Bacillus tequilensis strain ‘UPMRB9’improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress. PLOS One, 16(12), e0260869. https://doi.org/10.1371/journal.pone.0260869

  • Singh, A. K., Velmurugan, A., Gupta, D. S., Kumar, J., Kesari, R., Konda, A., Singh, N. P., Roy, S. D., Biswas, U., Kumar, R. R., & Singh, S. (2019). Draft genome sequence of a less-known wild Vigna: Beach pea (V. marina cv. ANBp-14-03). The Crop Journal, 7(5), 660-666. https://doi.org/10.1016/j.cj.2019.05.007

  • Squires, V. R., & Glenn, E. P. (2011). Salination, desertification, and soil erosion. In The role of food, agriculture, forestry, and fisheries in human nutrition (Vol. 3, pp. 102-123). Encyclopedia of Life Support Systems Publications.

  • Ullah, A., Bano, A., & Khan, N. (2021). Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems, 5, 618092. https://doi.org/10.3389/fsufs.2021.618092

  • Wakeel, A., Sümer, A., Hanstein, S., Yan, F., & Schubert, S. (2011). In vitro effect of different Na+/K+ ratios on plasma membrane H+-ATPase activity in maize and sugar beet shoot. Plant Physiology and Biochemistry, 49(3), 341-345. https://doi.org/10.1016/j.plaphy.2011.01.006

  • Wan, W., Liu, Q., Zhang, C., Li, K., Sun, Z., Li, Y., & Li, H. (2023). Alfalfa growth and nitrogen fixation constraints in salt-affected soils are in part offset by increased nitrogen supply. Frontiers in Plant Science, 14, 1126017. https://doi.org/10.3389/fpls.2023.1126017

  • Wang, N., Fu, F., Wang, H., Wang, P., He, S., Shao, H., Ni, Z., & Zhang, X. (2021). Effects of irrigation and nitrogen on chlorophyll content, dry matter, and nitrogen accumulation in sugar beet (Beta vulgaris L.). Scientific Reports, 11, 16651. https://doi.org/10.1038/s41598-021-95792-z

  • Witcombe, J. R., Hollington, P. A., Howarth, C. J., Reader, S., & Steele, K. A. (2008). Breeding for abiotic stresses for sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 703-716. https://doi.org/10.1098/rstb.2007.2179

  • Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., & Patel, M. (2020). Effect of abiotic stress on crops. In M. Hasanuzzaman, M. C. M. T. Filho, M. Fujita, & T. A. R. Nogueira (Eds.), Sustainable crop production. IntechOpen. https://doi.org/10.5772/intechopen.88434

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

J

Download Full Article PDF

Share this article

Recent Articles