Home / Regular Issue / JSSH Vol. 32 (3) Apr. 2024 / JST-4466-2023


Application of Membrane-less Microbial Fuel Cell in Reducing Human Hazards from Dewatered Sludge

Fatin Nur Izzati Mohd Fadzil, Chen Sep Ngee, Mohammed Zharif Asyrani Mohammed Alias, Muhammad Adib Fadhlullah Muhammad Lukman, Amira Suriaty Yaakop, Muaz Mohd Zaini Makhtar and Ana Masara Ahmad Mokhtar

Pertanika Journal of Social Science and Humanities, Volume 32, Issue 3, April 2024

DOI: https://doi.org/10.47836/pjst.32.3.12

Keywords: Antimicrobial resistance (AMR), cytotoxicity, dewatered sludge, inflammation, microbial fuel cell (MFC)

Published on: 24 April 2024

Membrane-less microbial fuel cell (ML-MFC) technology has emerged as a potential for wastewater treatment and electricity generation. Despite its benefit in green energy production, studies have yet to determine its role in minimizing the human hazards stemming from dewatered sludge (DS). Hence, this research aims to investigate the effects of ML-MFC-treated DS on cell toxicity and its benefits in reducing protein-denaturation-related inflammation and antimicrobial resistance (AMR) dissemination. MTT assay was performed to determine the cytotoxic effect of ML-MFC-treated DS on 3T3-L1 and Hep G2 cells at 24 h. The anti-inflammatory property of ML-MFC-treated DS was determined using a protein denaturation assay. Next, the antibiotic susceptibility of bacteria isolated from ML-MFC-treated samples was determined using the disk-diffusion method. All the data obtained were statistically analyzed using GraphPad Prism software (Version 9.2.0) with a p-value ≤0.05 was considered significant. Interestingly, ML-MFC-treated DS showed 80% cell viability on 3T3-L1 and slight toxicity on Hep G2 cells. ML-MFC-treated DS exhibited anti-inflammatory properties with 62.43% protein denaturation inhibition and displayed fewer antibiotic-resistance bacteria than the untreated. Overall, the ML-MFC technology showed novel applications by decreasing DS-related health hazards.

  • Al-Gheethi, A. A., Efaq, A. N., Bala, J. D., Norli, I., Abdel-Monem, M. O., & Ab. Kadir, M. O. (2018). Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Applied Water Science, 8(2), Article 74. https://doi.org/10.1007/s13201-018-0698-6

  • Alonso, E., Santos, A., & Riesco, P. (2004). Micro-organism re-growth in wastewater disinfected by UV radiation and ozone: A micro-biological study. Environmental Technology, 25(4), 433–441. https://doi.org/10.1080/09593332508618452

  • Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 40(3), 178–187. https://doi.org/https://doi.org/10.1016/j.endeavour.2016.07.002

  • Aperce, C. C., Burkey, T. E., KuKanich, B., Crozier-Dodson, B. A., Dritz, S. S., & Minton, J. E. (2010). Interaction of Bacillus species and Salmonella enterica serovar Typhimurium in immune or inflammatory signaling from swine intestinal epithelial cells1. Journal of Animal Science, 88(5), 1649–1656. https://doi.org/10.2527/jas.2009-2263

  • Bauer, M. A., Kainz, K., Carmona-Gutierrez, D., & Madeo, F. (2018). Microbial wars: Competition in ecological niches and within the microbiome. Microbial Cell, 5(5), 215-219. https://doi.org/10.15698/mic2018.05.628

  • Benítez-Chao, D. F., León-Buitimea, A., Lerma-Escalera, J. A., & Morones-Ramírez, J. R. (2021). Bacteriocins: An overview of antimicrobial, toxicity, and biosafety assessment by in vivo models. Frontiers in Microbiology, 12, Article 630695. https://doi.org/10.3389/fmicb.2021.630695

  • Cao, X. H., Wang, A. H., Wang, C. L., Mao, D. Z., Lu, M. F., Cui, Y. Q., & Jiao, R. Z. (2010). Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chemico-Biological Interactions, 183(3), 357–362. https://doi.org/10.1016/j.cbi.2009.11.027

  • Chen, P., Guo, X., Li, S., & Li, F. (2021). A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. Environment International, 156, Article 106689. https://doi.org/10.1016/j.envint.2021.106689

  • CLSI. (2020). Performance Standard for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute. https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf

  • Deep, G., Hassan, A. N., & Metzger, L. (2012). Exopolysaccharides modify functional properties of whey protein concentrate. Journal of Dairy Science, 95(11), 6332–6338. https://doi.org/10.3168/JDS.2012-5649

  • Feng, S., Meng, C., Hao, Z., & Liu, H. (2022). Bacillus licheniformis reshapes the gut microbiota to alleviate the subhealth. Nutrients, 14(8), Article 1642. https://doi.org/10.3390/nu14081642

  • Gerba, C. P., & Pepper, I. L. (2009). Chapter 24 - Wastewater treatment and biosolids reuse. In R. M. Maier, I. L. Pepper & C. P. Gerba (Eds.), Environmental Microbiology (2nd ed.: pp. 503–530). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-370519-8.00024-9

  • Górka, J., Cimochowicz-Rybicka, M., & Kryłów, M. (2018). Use of a water treatment sludge in a sewage sludge dewatering process. E3S Web of Conferences, 30, Article 02006. https://doi.org/10.1051/e3sconf/20183002006

  • Hocking, L., Ali, G.-C., d’Angelo, C., Deshpande, A., Stevenson, C., Virdee, M., & Guthrie, S. (2021). A rapid evidence assessment exploring whether antimicrobial resistance complicates non-infectious health conditions and healthcare services, 2010–20. JAC-Antimicrobial Resistance, 3(4), dlab171. https://doi.org/10.1093/jacamr/dlab171

  • Horiuchi, N., Nakagawa, K., Sasaki, Y., Minato, K., Fujiwara, Y., Nezu, K., Ohe, Y., & Saijo, N. (1988). In vitro antitumor activity of mitomycin C derivative (RM-49) and new anticancer antibiotics (FK973) against lung cancer cell lines determined by tetrazolium dye (MTT) assay. Cancer Chemotherapy and Pharmacology, 22(3), 246–250. https://doi.org/10.1007/BF00273419

  • Joseph, B., Dhas, B., Hena, V., & Raj, J. (2013). Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens. Asian Pacific Journal of Tropical Biomedicine, 3(12), 942–946. https://doi.org/10.1016/S2221-1691(13)60183-5

  • Kim, S., Kim, J. Y., Kim, S.-H., Bae, H. J., Yi, H., Yoon, S. H., Koo, B. S., Kwon, M., Cho, J. Y., Lee, C. E., & Hong, S. (2007). Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Letters, 581(5), 865–871. https://doi.org/10.1016/j.febslet.2007.01.059

  • Kumar, V., & Chopra, A. K. (2016). Agronomical performance of high yielding cultivar of eggplant (Solanum melongena L.) grown in sewage sludge amended soil. Research in Agriculture, 1(1), 1-24. https://doi.org/10.22158/ra.v1n1p1

  • Lan, R., & Kim, I. H. (2019). Effects of Bacillus licheniformis and Bacillus subtilis complex on growth performance and faecal noxious gas emissions in growing-finishing pigs. Journal of the Science of Food and Agriculture, 99(4), 1554–1560. https://doi.org/10.1002/jsfa.9333

  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics (pp. 115–175). John Wiley and sons.

  • Li, Q., Li, L., Chen, Y., Yu, C., Azevedo, P., Gong, J., & Yang, C. (2022). Bacillus licheniformis PF9 improves barrier function and alleviates inflammatory responses against enterotoxigenic Escherichia coli F4 infection in the porcine intestinal epithelial cells. Journal of Animal Science and Biotechnology, 13(1), Article 86. https://doi.org/10.1186/s40104-022-00746-8

  • Mahmoud, R. H., Gomaa, O. M., & Hassan, R. Y. A. (2022). Bio-electrochemical frameworks governing microbial fuel cell performance: Technical bottlenecks and proposed solutions. RSC Advances, 12(10), 5749–5764. https://doi.org/10.1039/D1RA08487A

  • Mandal, S. K., & Das, N. (2018). Application of microbial fuel cells for bioremediation of environmental pollutants: An overview. Journal of Microbiology, Biotechnology and Food Sciences, 7(4), 437–444. https://doi.org/10.15414/jmbfs.2018.7.4.437-444

  • Michael, C. A., Dominey-Howes, D., & Labbate, M. (2014). The antimicrobial resistance crisis: Causes, consequences, and management. Frontiers in Public Health, 2, Article 145. https://doi.org/10.3389/fpubh.2014.00145

  • Makhtar, M. M. Z., & Tajarudin, H. A. (2020). Electricity generation using membrane‐less microbial fuel cell powered by sludge supplemented with lignocellulosic waste. International Journal of Energy Research, 44(4), 3260–3265. https://doi.org/10.1002/er.5151

  • Makhtar, M. M. Z., Tajarudin, H. A., Samsudin, M. D. M., Vadivelu, V. M., Shoparwe, N. F., & Zainuddin, N. ‘Izzah. (2021). Membrane-less microbial fuel cell: Monte Carlo simulation and sensitivity analysis for COD removal in dewatered sludge. AIP Advances, 11(6), Article 065016. https://doi.org/10.1063/5.0039014

  • Makhtar, M. M. Z., M., & Vadivelu, V. M. (2019). Membraneless microbial fuel cell: Characterization of electrogenic bacteria and kinetic growth model. Journal of Environmental Engineering, 145(5), Article 04019015. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001522

  • Mokhtar, A. M. B. A., Makhtar, M. M. Z., & Mokhtar, A. M. A. (2022). Waste and health: Sewage sludge and its hazard to human. In A. Z. Yaser, H. A. Tajarudin & A. Embrandiri (Eds.), Waste Management, Processing and Valorisation (pp. 135–158). Springer. https://doi.org/10.1007/978-981-16-7653-6_8

  • Muaz, M. Z. M., Abdul, R., & Vadivelu, V. M. (2019). Recovery of energy and simultaneous treatment of dewatered sludge using membrane-less microbial fuel cell. Environmental Progress & Sustainable Energy, 38(1), 208–219. https://doi.org/10.1002/ep.12919

  • Obileke, K. C., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, Article 107003. https://doi.org/10.1016/j.elecom.2021.107003

  • Ondon, B. S., Li, S., Zhou, Q., & Li, F. (2020). Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification. Bioresource Technology, 304, Article 122984. https://doi.org/10.1016/j.biortech.2020.122984

  • Osińska, A., Korzeniewska, E., Harnisz, M., Felis, E., Bajkacz, S., Jachimowicz, P., Niestępski, S., & Konopka, I. (2020). Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Journal of Hazardous Materials, 381, Article 121221. https://doi.org/10.1016/j.jhazmat.2019.121221

  • Osman, N. I., Sidik, N. J., Awal, A., Adam, N. A. M., & Rezali, N. I. (2016). In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-infl ammatory use in gouty arthritis. Journal of Intercultural Ethnopharmacology, 5(4), 343–349. https://doi.org/10.5455/jice.20160731025522

  • Ouardani, I., Turki, S., Aouni, M., & Romalde, J. L. (2016). Detection and molecular characterization of hepatitis A virus from tunisian wastewater treatment plants with different secondary treatments. Applied and Environmental Microbiology, 82(13), 3834–3845. https://doi.org/10.1128/AEM.00619-16

  • Padmanabhan, P., & Jangle, S. N. (2012). Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. International Journal of Basic and Applied Medical Sciences, 2(1), 109-116.

  • Paynich, M. L., Jones-Burrage, S. E., & Knight, K. L. (2017). Exopolysaccharide from bacillus subtilis induces anti-inflammatory M2 macrophages that prevent T cell–mediated disease. The Journal of Immunology, 198(7), 2689–2698. https://doi.org/10.4049/jimmunol.1601641

  • Rhayat, L., Maresca, M., Nicoletti, C., Perrier, J., Brinch, K. S., Christian, S., Devillard, E., & Eckhardt, E. (2019). Effect of bacillus subtilis strains on intestinal barrier function and inflammatory response. Frontiers in Immunology, 10, Article 564. https://doi.org/10.3389/fimmu.2019.00564

  • Roselli, M., Pieper, R., Rogel-Gaillard, C., de Vries, H., Bailey, M., Smidt, H., & Lauridsen, C. (2017). Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Animal Feed Science and Technology, 233, 104–119. https://doi.org/10.1016/j.anifeedsci.2017.07.011

  • Sabri, M. N. I. M., Shamsuddin, N. A., Alias, M. F. A., Tajaruddin, H. A., & Makhtar, M. Z. (2021). Assessment of power generation from dewatered sludge using membrane-less microbial fuel cell. IOP Conference Series: Earth and Environmental Science, 765(1), Article 012060. https://doi.org/10.1088/1755-1315/765/1/012060

  • Safuan, Z. M., Hassan, S., & Faizairi, M. (2014). Penerbit akademia baru thermal drying of Malaysian sewage sludge [Thermal drying of Malaysian sewage sludge]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences ISSN, 3(1), 2289–7879.

  • Straub, T. M., Pepper, I. L., & Gerba, C. P. (1993). Hazards from pathogenic microorganisms in land-disposed sewage sludge. In G. W. Ware (Ed.), Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews (pp. 55-91). Springer. https://doi.org/10.1007/978-1-4684-7065-9_3

  • Sun, D., Jeannot, K., Xiao, Y., & Knapp, C. W. (2019). Editorial: Horizontal gene transfer mediated bacterial antibiotic resistance. Frontiers in Microbiology, 10, Article 1933. https://doi.org/10.3389/fmicb.2019.01933

  • Verma, P., Pandey, P. K., Gupta, A. K., Seong, C. N., Park, S. C., Choe, H. N., Baik, K. S., Patole, M. S., & Shouche, Y. S. (2012). Reclassification of Bacillus beijingensis Qiu et al. 2009 and Bacillus ginsengi Qiu et al. 2009 as Bhargavaea beijingensis comb. nov. and Bhargavaea ginsengi comb. nov. and emended description of the genus Bhargavaea. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_10), 2495–2504. https://doi.org/10.1099/ijs.0.034850-0

  • Wang, S., Hou, Q., Guo, Q., Zhang, J., Sun, Y., Wei, H., & Shen, L. (2020). Isolation and characterization of a Deoxynivalenol-Degrading Bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice. Toxins, 12(3), Article 184. https://doi.org/10.3390/toxins12030184

  • Xue, W., Li, F., & Zhou, Q. (2019). Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell. Bioresource Technology, 289, Article 121632. https://doi.org/10.1016/j.biortech.2019.121632

  • Yacob, S., Ali Hassan, M., Shirai, Y., Wakisaka, M., & Subash, S. (2006). Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Science of the Total Environment, 366(1), 187–196. https://doi.org/10.1016/j.scitotenv.2005.07.003

  • Yin, H., Guo, C., Wang, Y., Liu, D., Lv, Y., Lv, F., & Lu, Z. (2013). Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anti-Cancer Drugs, 24(6), 587–598. https://doi.org/10.1097/CAD.0b013e3283611395

  • Zhao, H., Yan, L., Xu, X., Jiang, C., Shi, J., Zhang, Y., Liu, L., Lei, S., Shao, D., & Huang, Q. (2018). Potential of Bacillus subtilis lipopeptides in anti-cancer I: Induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. AMB Express, 8(1), 1-16. https://doi.org/10.1186/s13568-018-0606-3

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Related Articles