e-ISSN 2231-8534
ISSN 0128-7702
J
Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Baggio, J. S., de Afonseca Lourenço, & Amorim, L. (2014). Eradicant and curative treatments of hexanal against peach brown rot. Scientia Agricola, 71(1), 72–76. https://doi.org/10.1590/S0103-90162014000100010
Bisignano, G., Laganà, M. G., Trombetta, D., Arena, S., Nostro, A., Uccella, N., Mazzanti, G., & Saija, A. (2001). In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L. FEMS Microbiology Letters, 198(1), 9–13. https://doi.org/10.1016/S0378-1097(01)00089-1
Chang, L.-Y., & Brecht, J. K. (2023). Responses of 1-methylcyclopropene (1-MCP)−treated banana fruit to pre− and post−treatment ethylene exposure. Scientia Horticulturae, 309, 111636. https://doi.org/10.1016/j.scienta.2022.111636
Cho, Y., Song, M.-K., & Ryu, J.-C. (2021). DNA methylome signatures as epigenetic biomarkers of hexanal associated with lung toxicity. PeerJ, 9, e10779. https://doi.org/10.7717/peerj.10779
Dhakshinamoorthy, D., Sundaresan, S., Iyadurai, A., Subramanian, K. S., Janavi, G. J., Paliyath, G., & Subramanian, J. (2020). Hexanal vapor induced resistance against major postharvest pathogens of banana (Musa acuminata L.). Plant Pathology Journal, 36(2), 133–147. https://doi.org/10.5423/PPJ.OA.03.2019.0072
Dhalaria, R., Verma, R., Kumar, D., Puri, S., Tapwal, A., Kumar, V., Nepovimova, E., & Kuca, K. (2020). Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants, 9(11), 1123. https://doi.org/10.3390/antiox9111123
dos Santos, S. F., de Cassia Viera Cardoso, R., Borges, Í. M. P., e Almeida, A. C., Andrade, E. S., Ferreira, I. O., & do Carmo Ramos, L. (2020). Post-harvest losses of fruits and vegetables in supply centers in Salvador, Brazil: Analysis of determinants, volumes and reduction strategies. Waste Management, 101, 161–170. https://doi.org/10.1016/j.wasman.2019.10.007
Du, X., Finn, C. E., & Qian, M. C. (2010). Volatile composition and odour-activity value of thornless ‘Black Diamond’ and ‘Marion’ blackberries. Food Chemistry, 119(3), 1127–1134. https://doi.org/10.1016/j.foodchem.2009.08.024
El Kayal, W., Paliyath, G., Sullivan, J. A., & Subramanian, J. (2017). Phospholipase D inhibition by hexanal is associated with calcium signal transduction events in raspberry. Horticulture Research, 4, 17042. https://doi.org/10.1038/hortres.2017.42
Fan, L., Song, J., Beaudry, R. M., & Hildebrand, P. D. (2006). Effect of hexanal vapor on spore viability of Penicillium expansum, lesion development on whole apples and fruit volatile biosynthesis. Journal of Food Science, 71(3), M105-M109. https://doi.org/10.1111/j.1365-2621.2006.tb15632.x
Fan, L., Zheng, S., & Wang, X. (1997). Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell, 9(12), 2183–2196. https://doi.org/10.1105/tpc.9.12.2183
Food and Agriculture Organization of the United Nations. (2023). Agricultural production statistics 2000-2022: FAOSTAT Analytical Brief 79. FAO. https://doi.org/10.4060/cc9205en
Frohman, M. A., Sung, T.-C., & Morris, A. J. (1999). Mammalian phospholipase D structure and regulation. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1439(2), 175–186. https://doi.org/10.1016/S1388-1981(99)00093-1
Gardini, F., R. Lanciotti, R., Caccioni, D. R. L., & Guerzoni, M. E. (1997). Antifungal activity of hexanal as dependent on its vapor pressure. Journal of Agriculture and Food Chemistry, 45(11), 4297–4302. https://doi.org/10.1021/jf970347u
Genovese, A., Caporaso, N., & Sacchi, R. (2021). Flavor chemistry of virgin olive oil: An overview. Applied Sciences, 11(4), 1639. https://doi.org/10.3390/app11041639
Gill, K. S., Dhaliwal, H. S., Mahajan, B. V. C., Paliyath, G., & Boora, R. S. (2016). Enhancing postharvest shelf life and quality of guava (Psidium guajava L.) cv. Allahabad Safeda by pre-harvest application of hexanal containing aqueous formulation. Postharvest Biology and Technology, 112, 224–232. https://doi.org/10.1016/j.postharvbio.2015.09.010
Gunasekaran, K., Karthika, S., Nandakumar, N. B., Subramanian, K. S., Paliyath, G., & Subramanian, J. (2015). Biosafety of hexanal. International Development Research Centre.
Gustavsson, J., & Stage, J. (2011). Retail waste of horticultural products in Sweden. Resources, Conservation and Recycling, 55(5), 554–556. https://doi.org/10.1016/j.resconrec.2011.01.007
Hammond, S. M., Jenco, J. M., Nakashima, S., Cadwallader, K., Gu, Q. M., Cook, S., Nozawa, Y., Prestwich, G. D., Frohman, M. A., & Morris, A. J. (1997). Characterization of two alternately spliced forms of phospholipase D1: Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and RHO family monomeric GTP-binding proteins and protein kinase C-α. Journal of Biological Chemistry, 272(6), 3860–3868. https://doi.org/10.1074/jbc.272.6.3860
Hanahan, D. J., & Chaikoff, I. L. (1947). The phosphorus-containing lipides of the carrot. Journal of Biological Chemistry, 168(1), 233–240. https://doi.org/10.1016/s0021-9258(17)35110-4
Hanning, I. B., Nutt, J. D., & Ricke, S. C. (2009). Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. Foodborne Pathogens and Disease, 6(6), 635–648. https://doi.org/10.1089/fpd.2008.0232
He, Y., Chen, R., Qi, Y., Salazar, J. K., Zhang, S., Tortorello, M. L., Deng, X., & Zhang, W. (2021). Survival and transcriptomic response of Salmonella enterica on fresh-cut fruits. International Journal of Food Microbiology, 348, 109201. https://doi.org/10.1016/j.ijfoodmicro.2021.109201
Helander, I. M., von Wright, A., & Mattila-Sandholm, T.-M. (1997). Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria. Trends in Food Science and Technology, 8(5), 146–150. https://doi.org/10.1016/S0924-2244(97)01030-3
Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. Plant Cell, 17(8), 2142–2155. https://doi.org/10.1105/tpc.105.032508
Ho, C.-T., Zheng, X., & Li, S. (2015). Tea aroma formation. Food Science and Human Wellness, 4(1), 9–27. https://doi.org/10.1016/j.fshw.2015.04.001
Jincy, M., Djanaguiraman, M., Jeyakumar, P., Subramanian, K. S., Jayasankar, S., & Paliyath, G. (2017). Inhibition of phospholipase D enzyme activity through hexanal leads to delayed mango (Mangifera indica L.) fruit ripening through changes in oxidants and antioxidant enzymes activity. Scientia Horticulturae, 218, 316–325. https://doi.org/10.1016/j.scienta.2017.02.026
Karasawa, M. M. G., & Mohan, C. (2018). Fruits as prospective reserves of bioactive compounds: A review. Natural Products and Bioprospecting, 8, 335–346. https://doi.org/10.1007/s13659-018-0186-6
Karthika, S., Nanda Kumar, N. B., Gunasekaran, K., & Subramanian, K. S. (2015). Biosafety of nanoemulsion of hexanal to honey bees and natural enemies. Indian Journal of Science and Technology, 8(30), 1-7. https://doi.org/10.17485/ijst/2015/v8i30/52668
Kaya, O., Incesu, M., Ates, F., Keskin, N., Verdugo-Vásquez, N., & Gutiérrez-Gamboa, G. (2022). Study of volatile organic compounds of two table grapes (cv. Italia and Bronx Seedless) along ripening in vines established in the Aegean Region (Turkey). Plants, 11(15), 1935. https://doi.org/10.3390/plants11151935
Khan, A. S., & Ali, S. (2018). Preharvest sprays affecting shelf life and storage potential of fruits. In M. W. Siddiqui (Ed.), Preharvest modulation of postharvest fruit and vegetable quality (pp. 209-225). Academic Press. https://doi.org/10.1016/B978-0-12-809807-3.00009-3
Kumar, S. K., El Kayal, W., Sullivan, J. A., Paliyath, G., & Jayasankar, S. (2018). Pre-harvest application of hexanal formulation enhances shelf life and quality of ‘Fantasia’ nectarines by regulating membrane and cell wall catabolism-associated genes. Scientia Horticulturae, 229, 117–124. https://doi.org/10.1016/j.scienta.2017.10.031
Lamba, A. (2007). Antimicrobial activities of aldehydes and ketones produced during rapid volatilization of biogenic oils [Master’s thesis, Missouri University of Science and Technology]. Missouri University of Science and Technology library and Learning Resources. https://scholarsmine.mst.edu/masters_theses/4578
Lanciotti, R., Gianotti, A., Patrignani, F., Belletti, N., Guerzoni, M. E., & Gardini, F. (2004). Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends in Food Science and Technology, 15(3–4), 201–208. https://doi.org/10.1016/j.tifs.2003.10.004
Lee, J., Vázquez-Araújo, L., Adhikari, K., Warmund, M., & Elmore, J. (2011). Volatile compounds in light, medium, and dark black walnut and their influence on the sensory aromatic profile. Journal of Food Science, 76(2), C199–C204. https://doi.org/10.1111/j.1750-3841.2010.02014.x
Li, J., Yu, F., Guo, H., Xiong, R., Zhang, W., He, F., Zhang, M., & Zhang, P. (2020). Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Research, 30, 61–69. https://doi.org/10.1038/s41422-019-0244-6
Li, L., Yi, P., Huang, F., Tang, J., Sun, J., Duan, X., Li, J., Su, Z., Ling, D., Tang, Y., Li, C., He, X., Sheng, J., Li, Z., Huang, M., Xin, M., & Gan, T. (2022). Effects of phospholipase D inhibitors treatment on membrane lipid metabolism of postharvest banana fruit in response to mechanical wounding stress. Horticulturae, 8(10), 901. https://doi.org/10.3390/horticulturae8100901
Li, S.-F., Zhang, S.-B., Lv, Y.-Y., Zhai, H.-C., Li, N., Hu, Y.-S., & Cai, J.-P. (2021). Metabolomic analyses revealed multifaceted effects of hexanal on Aspergillus flavus growth. Applied Microbiology and Biotechnology, 105, 3745–3757. https://doi.org/10.1007/s00253-021-11293-z
Lv, J., Zhang, Y., Sun, M., Chen, J., Ge, Y., & Li, J. (2023). 1-Methylcyclopropene (1-MCP) treatment differentially mediated expression of vacuolar processing enzyme (VPE) genes and delayed programmed cell death (PCD) during ripening and senescence of apple fruit. Scientia Horticulturae, 307, 111489. https://doi.org/10.1016/j.scienta.2022.111489
Marangoni, A. G., Palma, T., & Stanley, D. W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology, 7(3), 193–217. https://doi.org/10.1016/0925-5214(95)00042-9
Martini, C., & Mari, M. (2014). Monilinia fructicola, Monilinia laxa (Monilinia rot, brown rot). In S. Bautista-Baños (Ed.), Postharvest decay: Control strategies (pp. 233-265). Academic Press. https://doi.org/10.1016/B978-0-12-411552-1.00007-7
Mohan, C., Priya, S. S., Sridharan, S., & Subramanian, K. S. (2020). Biosafety of nanoemulsion of hexanal on Chrysoperla zastrowi sillemi Stephens (Chrysopidae: Neuroptera). International Journal of Current Microbiology and Applied Sciences, 9(7), 1466–1475. https://doi.org/10.20546/ijcmas.2020.907.168
Mohan, C., Sridharan, S., Gunasekaran, K., Subramanian, K. S., & Natarajan, N. (2017a). Biosafety of hexanal as nanoemulsion on egg parasitoid Trichogramma spp. Journal of Entomology and Zoology Studies, 5(2), 1541–1544.
Mohan, C., Sridharan, S., Subramanian, K. S., Natarajan, N., & Nakkeeran, S. (2017b). Effect of nanoemulsion of hexanal on honey bees (Hymenoptera; Apidae). Journal of Entomology and Zoology Studies, 5(53), 1415–1418.
Nair, D. V. T., Venkitanarayanan, K., & Johny, A. K. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7(10), 167. https://doi.org/10.3390/foods7100167
Nair, I. J., Sharma, S., & Kaur, R. (2020). Efficacy of the green lace wing, Chrysoperla zastrowi sillemi (Esben-Peterson) (Neuroptera: Chrysopidae), against sucking pests of tomato: An appraisal under protected conditions. Egyptian Journal of Biological Pest Control, 30, 74. https://doi.org/10.1186/s41938-020-00277-2
National Library of Medicine. (n.d.). Hexanal. NIH. https://pubchem.ncbi.nlm.nih.gov/compound/Hexanal
Novák, D., Vadovič, P., Ovečka, M., Šamajová, O., Komis, G., Colcombet, J., & Šamaj, J. (2018). Gene expression pattern and protein localization of Arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Frontiers in Plant Science, 9, 371. https://doi.org/10.3389/fpls.2018.00371
Padmanabhan, P., Cheema, A. S., Todd, J. F., Lim, L.-T., & Paliyath, G. (2020). Ripening responses, fruit quality and phospholipase D gene expression in bell peppers exposed to hexanal vapor. Postharvest Biology and Technology, 170, 111317. https://doi.org/10.1016/j.postharvbio.2020.111317
Paliyath, G., Tiwari, K., Yuan, H. Y., & Whitaker, B. D. (2008). Structural deterioration in produce: Phospholipase D, membrane and senescence. In G. Paliyath, D. P. Murr, A. K. Handa, & S. Lurie (Eds.), Postharvest biology and technology of fruits, vegetables and flowers (pp. 195–239). Wiley-Blackwell.
Payasi, A., Mishra, N. N., Chaves, A. L. S., & Singh, R. (2009). Biochemistry of fruit softening: An overview. Physiology and Molecular Biology of Plants, 15, 103–113. https://doi.org/10.1007/s12298-009-0012-z
Pérez, A. G., Sanz, C., Olías, R., & Olías, J. M. (1999). Lipoxygenase and hydroperoxide lyase activities in ripening strawberry fruits. Journal of Agricultural and Food Chemistry, 47(1), 249–253. https://doi.org/10.1021/jf9807519
Preethi, P., Soorianathasundaram, K., Sadasakthi, A., Subramanian, K., Reddy, S. V., Paliyath, G., & Subramanian, J. (2021). Preharvest application of hexanal as a surface treatment. Coatings, 11(10), 1267. https://doi.org/10.3390/coatings11101267
Qin, C., & Wang, X. (2002). The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiology, 128(3), 1057–1068. https://doi.org/10.1104/pp.010928
Razali, N. A., Wan, I. W. M., Safari, S., Rosly, N. K., Hamzah, F. A., & Wan Husin, W. M. R. I. (2022). Cryogenic freezing preserves the quality of whole durian fruit for the export market. Food Research, 6(3), 360–364. https://doi.org/10.26656/fr.2017.6(3).428
Seethapathy, P., Gurudevan, T., Subramanian, K. S., & Kuppusamy, P. (2016). Bacterial antagonists and hexanal-induced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. Journal of Plant Interactions, 11(1), 158–166. https://doi.org/10.1080/17429145.2016.1252068
Sharma, M., Jacob, J. K., Subramanian, J., & Paliyath, G. (2010). Hexanal and 1-MCP treatments for enhancing the shelf life and quality of sweet cherry (Prunus avium L.). Scientia Horticulturae, 125(3), 239–247. https://doi.org/10.1016/j.scienta.2010.03.020
Silué, Y., Nindjin, C., Cissé, M., Kouamé, K. A., Amani, N. Guessan G., Mbéguié-A- Mbéguié, D., Lopez-Lauri, F., & Tano, K. (2022). Hexanal application reduces postharvest losses of mango (Mangifera indica L. variety “Kent”) over cold storage whilst maintaining fruit quality. Postharvest Biology and Technology, 189, 111930. https://doi.org/10.1016/j.postharvbio.2022.111930
Song, J., Hildebrand, P. D., Fan, L., Forney, C. F., Renderos, W. E., Campbell-Palmer, L., & Doucette, C. (2007). Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay. Journal of Food Science, 72(4), M108–M112. https://doi.org/10.1111/j.1750-3841.2007.00341.x
Song, J., Leepipattanawit, R., Deng, W., & Beaudry, R. M. (1996). Hexanal vapor is a natural, metabolizable fungicide: Inhibition of fungal activity and enhancement of aroma biosynthesis in apple slices. Journal of the American Society for Horticultural Science, 121(5), 937–942. https://doi.org/10.21273/jashs.121.5.937
Songe, J., Fan, L., Forney, C., Campbell, P. L., & Fillmore, S. (2010). Effect of hexanal vapor to control postharvest decay and extend shelf-life of highbush blueberry fruit during controlled atmosphere storage. Canadian Journal of Plant Science, 90(3), 359–366. https://doi.org/10.4141/CJPS09135
Tan, P. F., Ng, S. K., Tan, T. B., Chong, G. H., & Tan, C. P. (2019). Shelf life determination of durian (Durio zibethinus) paste and pulp upon high-pressure processing. Food Research, 3(3), 221–230. https://doi.org/10.26656/fr.2017.3(3).215
Thongkum, M., Imsabai, W., Burns, P., McAtee, P. A., Schaffer, R. J., Allan, A. C., & Ketsa, S. (2018). The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening. Plant Physiology and Biochemistry, 125, 232–238. https://doi.org/10.1016/j.plaphy.2018.02.004
Tiwari, K., & Paliyath, G. (2011). Microarray analysis of ripening-regulated gene expression and its modulation by 1-MCP and hexanal. Plant Physiology and Biochemistry, 49(3), 329–340. https://doi.org/10.1016/j.plaphy.2011.01.007
Voora, V., Larrea, C., & Bermudez, S. (2020). Global Market Report: Bananas. International Institute for Sustainable Development. https://www.iisd.org/system/files/publications/ssi-global-market-report-banana.pdf
Wang, X., Xu, L., & Zheng, L. (1994). Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. Journal of Biological Chemistry, 269(32), 20312–20317. https://doi.org/10.1016/s0021-9258(17)31993-2
Whitney, S. E. C., Gidley, M. J., & McQueen-Mason, S. J. (2000). Probing expansin action using cellulose/hemicellulose composites. The Plant Journal, 22(4), 327–334. https://doi.org/10.1046/j.1365-313X.2000.00742.x
Yumbya, P. M., Hutchinson, M. J., Ambuko, J., Owino, W. O., Sullivan, A., Paliyath, G., & Subramanian, J. (2018). Efficacy of hexanal application on the postharvest shelf life and quality of banana fruits (Musa acuminata) in Kenya. Tropical Agriculture, 95(1), 14-35.
Zambonelli, C., & Roberts, M. F. (2005). Non-HKD phospholipase D enzymes: New players in phosphatidic acid signaling? Progress in Nucleic Acid Research and Molecular Biology, 79, 133–181. https://doi.org/10.1016/S0079-6603(04)79003-0
Zhang, K., Gao, L., Zhang, C., Feng, T., & Zhuang, H. (2022). Analysis of volatile flavor compounds of corn under different treatments by GC-MS and GC-IMS. Frontiers in Chemistry, 10, 725208. https://doi.org/10.3389/fchem.2022.725208
Zhang, Q., Song, P., Qu, Y., Wang, P., Jia, Q., Guo, L., Zhang, C., Mao, T., Yuan, M., Wang, X., & Zhang, W. (2017). Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis. Plant Cell and Environment, 40(10), 2220–2235. https://doi.org/10.1111/pce.13023
ISSN 0128-7702
e-ISSN 2231-8534
Recent Articles