Home / Regular Issue / JST Vol. 31 (1) Jan. 2023 / JST-3441-2022

 

Failure Behavior and Mechanism of Pultruded Kenaf/Glass Hybrid Composite Under Compressive Impact Loading

Muhammad Fauzinizam Razali, Sareh Aiman Hilmi Abu Seman, Mohd Syakirin Rusdi and Megat Naiman Megat Anorhisham

Pertanika Journal of Science & Technology, Volume 31, Issue 1, January 2023

DOI: https://doi.org/10.47836/pjst.31.1.25

Keywords: Compressive loading, failure behavior and mechanism, high strain rate, kenaf/glass composite

Published on: 3 January 2023

A substantial amount of kenaf fiber research has been carried out recently to incorporate more sustainable materials into the production process. For many years, scientists have studied the properties of kenaf and the hybrid composites it may form. Composites made from kenaf and synthetic fibers were the focus of the majority of the study. Similarly, the researchers discovered mechanical characteristics as a fundamental truth. Despite this, earlier research on particular properties has not permitted using kenaf composites for load-bearing purposes. Nevertheless, kenaf composites can significantly influence car exteriors and other vital applications, even if their impact characteristics are only studied in other materials science disciplines. Due to this, dynamic failure behavior and mechanism of unidirectional kenaf and kenaf/glass hybrid composite compressive response were examined. Therefore, both composite specimens were loaded compressively under static and dynamic loading at a strain rate range of 0.1/s to 1700/s. The results showed that the failure behavior and mechanism of kenaf and kenaf/glass hybrid composite were different under static and dynamic loadings. Shear banding failure occurred at 60 degrees for kenaf composites. In contrast, kenaf/glass composites were fractured longitudinally along the fiber direction under static loading. Glass fibers in hybrid composites were more vulnerable to damage under microscopic analysis because they carried most loads. Consequently, the kenaf fibers in hybrid composites were less damaged than those in kenaf composites, which had fiber breakage, fiber splitting, and fiber-matrix debonding.

  • Ashraf, W., Ishak, M. R., Zuhri, M. Y. M., Yidris, N., & Ya’acob, A. M. (2021). Experimental investigation on the mechanical properties of a sandwich structure made of flax/glass hybrid composite facesheet and honeycomb core. International Journal of Polymer Science, 2021, Article 8855952. https://doi.org/10.1155/2021/8855952

  • Azmi, A. M. R., Sultan, M. T. H., Jawaid, M., Shah, A. U. M., Nor, A. F. M., Majid, M. S. A., Muhamad, S., & Talib, A. R. A. (2019). Impact properties of kenaf fibre/X-ray films hybrid composites for structural applications. Journal of Materials Research and Technology, 8(2), 1982-1990. https://doi.org/10.1016/j.jmrt.2018.12.016

  • Dewan, M. W., Hossain, M. K., Hosur, M., & Jeelani, S. (2013). Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. Journal of Applied Polymer Science, 128(6), 4110-4123. https://doi.org/10.1002/app.38641

  • Goutianos, S., Mao, R., & Peijs, T. (2018). Effect of inter-fibre bonding on the fracture of fibrous networks with strong interactions. International Journal of Solids and Structures, 136-137, 271-278. https://doi.org/10.1016/j.ijsolstr.2017.12.020

  • Ismail, M. F., Sultan, M. T. H., Hamdan, A., Shah, A. U. M., & Jawaid, M. (2019). Low velocity impact behaviour and post-impact characteristics of kenaf/glass hybrid composites with various weight ratios. Journal of Materials Research and Technology, 8(3), 2662-2673. https://doi.org/10.1016/j.jmrt.2019.04.005

  • Lee, S. H., & Waas, A. (1999). Compressive response and failure of fiber reinforced unidirectional composites. International Journal of Fracture, 100, 275-306. https://doi.org/10.1023/A:1018779307931

  • Majid, D. L., Jamal, Q., & Manan, N. (2018). Low-velocity impact performance of glass fiber, kenaf fiber, and hybrid glass/kenaf fiber reinforced epoxy composite laminates. BioResources, 13(4), 8839-8852. https://doi.org/10.15376/biores.13.4.8839-8842

  • Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., Parija, S., Nayak, S. K., & Tripathy, S. S. (2003). Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology, 63(10), 1377-1385. https://doi.org/10.1016/S0266-3538(03)00084-8

  • Nadzri, S. N. Z. A., Sultan, M. T. S., Shah, A. U. M., Safri, S. N. A., & Basri, A. A. (2020). A review on the kenaf/glass hybrid composites with limitations on mechanical and low velocity impact properties. Polymers, 12(6), Article 1285. https://www.mdpi.com/2073-4360/12/6/1285

  • Onuwe, J., Ogunbode, E., Yatim, J., & Ali, S. (2018). An overview of kenaf fibre as a bio composites material in fabrication process for sustainable construction. Environmental Technology & Science Journal, 9(1), 134-144.

  • Rahul, V., Alokita, S., Jayakrishna, K., Kar, V. R., Rajesh, M., Thirumalini, S., & Manikandan, M. (2019). Structural health monitoring of aerospace composites. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 33-52). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102291-7.00003-4

  • Ravishankar, B., Nayak, S. K., & Kader, M. A. (2019). Hybrid composites for automotive applications - A review. Journal of Reinforced Plastics and Composites, 38(18), 835-845. https://doi.org/10.1177/0731684419849708

  • Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, 112-121. https://doi.org/10.1016/j.compositesb.2017.09.008

  • Sanjay, M., & Yogesha, B. (2018). Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences. Journal of Industrial Textiles, 47(7), 1830-1848. https://doi.org/10.1177/1528083717710713

  • Sarasini, F., Tirillò, J., D’Altilia, S., Valente, T., Santulli, C., Touchard, F., Chocinski-Arnault, L., Mellier, D., Lampani, L., & Gaudenzi, P. (2016). Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Composites Part B: Engineering, 91, 144-153. https://doi.org/10.1016/j.compositesb.2016.01.050

  • Seman, S. A. H. A., Ahmad, R., & Akil, H. M. (2019). Experimental and numerical investigations of kenaf natural fiber reinforced composite subjected to impact loading. Polymer Composites, 40(3), 909-915. https://doi.org/10.1002/pc.24758

  • Sharba, M. J., Leman, Z., Sultan, M. T. H., Ishak, M. R., & Hanim, M. A. A. (2016). Tensile and compressive properties of woven kenaf/glass sandwich hybrid composites. International Journal of Polymer Science, 2016, Article 1235048. https://doi.org/10.1155/2016/1235048

  • Subramaniam, K., Malingam, S. D., Feng, N. L., & Bapokutty, O. (2019). The effects of stacking configuration on the response of tensile and quasi-static penetration to woven kenaf/glass hybrid composite metal laminate. Polymer Composites, 40(2), 568-577. https://doi.org/10.1002/pc.24691

  • Tamrakar, S., Kiziltas, A., Mielewski, D., & Zander, R. (2021). Characterization of kenaf and glass fiber reinforced hybrid composites for underbody shield applications. Composites Part B: Engineering, 216, Article 108805. https://doi.org/10.1016/j.compositesb.2021.108805

  • Zhang, Y., Li, Y., Ma, H., & Yu, T. (2013). Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Composites Science and Technology, 88, 172-177. https://doi.org/10.1016/j.compscitech.2013.08.037