Home / Regular Issue / JST Vol. 31 (1) Jan. 2023 / JST-3527-2022

 

A Review of Optical Ultrasound Imaging Modalities for Intravascular Imaging

Munyaradzi Charles Rushambwa, Rimer Suvendi, Thanyani Pandelani, Rajkumar Palaniappan, Vikneswaran Vijean and Fizza Ghulam Nabi

Pertanika Journal of Science & Technology, Volume 31, Issue 1, January 2023

DOI: https://doi.org/10.47836/pjst.31.1.17

Keywords: Imaging, intravascular, optoacoustic, photoacoustic, reconstruction, ultrasound

Published on: 3 January 2023

Recent advances in medical imaging include integrating photoacoustic and optoacoustic techniques with conventional imaging modalities. The developments in the latter have led to the use of optics combined with the conventional ultrasound technique for imaging intravascular tissues and applied to different areas of the human body. Conventional ultrasound is a skin contact-based method used for imaging. It does not expose patients to harmful radiation compared to other techniques such as Computerised Tomography (CT) and Magnetic Resonance Imaging (MRI) scans. On the other hand, optical Ultrasound (OpUS) provides a new way of viewing internal organs of the human body by using skin and an eye-safe laser range. OpUS is mostly used for binary measurements since they do not require to be resolved at a much higher resolution but can be used to check for intravascular imaging. Various signal processing techniques and reconstruction methodologies exist for Photo-Acoustic Imaging, and their applicability in bioimaging is explored in this paper.

  • Berlet, T., Fehr, T., & Merz, T. M. (2014). Current practice of lung ultrasonography (LUS) in the diagnosis of pneumothorax: A survey of physician sonographers in Germany. Critical Ultrasound Journal, 6(1), 16-16. https://doi.org/10.1186/s13089-014-0016-y

  • Burgholzer, P., Berer, T., Reitinger, B., Nuster, R., & Paltauf, G. (2008). Photoacoustic imaging and laser‐ultrasonics using Fourier domain reconstruction methods. The Journal of the Acoustical Society of America, 123(5), 3156-3156. https://doi.org/10.1121/1.2933188

  • Canagasabey, A., Michie, A., Canning, J., Holdsworth, J., Fleming, S., Wang, H. C., & Åslund, M. L. (2011). A comparison of Michelson and Mach-Zehnder interferometers for laser linewidth measurements. In Conference on Lasers and Electro-Optics/Pacific Rim (p. C428). Optical Society of America.

  • Chao, H., Kun, W., Lihong, V. W., & Mark, A. A. (2013). Image reconstruction in photoacoustic tomography with heterogeneous media using an iterative method. In Photons Plus Ultrasound: Imaging and Sensing 2013 (Vol. 8581, pp. 37-44). SPIE Publishing.

  • Chen, Y., Chen, B., Yu, T., Yin, L., Sun, M., He, W., & Ma, C. (2021). Photoacoustic mouse brain imaging using an optical fabry-pérot interferometric ultrasound sensor. Frontiers in Neuroscience, 15, Article 672788. https://doi.org/10.3389/fnins.2021.672788

  • Chen, Z., Mu, X., Han, Z., Yang, S., Zhang, C., Guo, Z., Bai, Y., & He, W. (2019). An optical/photoacoustic dual-modality probe: Ratiometric in/ex vivo imaging for stimulated H2S upregulation in mice. Journal of the American Chemical Society, 141(45), 17973-17977. https://doi.org/10.1021/jacs.9b09181

  • Colchester, R. J., Little, C., Dwyer, G., Noimark, S., Alles, E. J., Zhang, E. Z., Loder, C. D., Parkin, I. P., Papakonstantinou, I., Beard, P. C., Finlay, M. C., Rakhit, R. D., & Desjardins, A. E. (2019). All-optical rotational ultrasound imaging. Scientific Reports, 9(1), Article 5576. https://doi.org/10.1038/s41598-019-41970-z

  • Csány, G., Gergely, L. H., Szalai, K., Lőrincz, K. K., Strobel, L., Csabai, D., Hegedüs, I., Marosán-Vilimszky, P., Füzesi, K., Sárdy, M., & Gyöngy, M. (2021). First clinical experience with a novel optical-ultrasound imaging device on various skin pathologies. medRxiv Preprint. https://doi.org/10.1101/2021.06.28.21259325

  • Demian, D., Duma, V. F., Sinescu, C., Negrutiu, M. L., Cernat, R., Topala, F. I., Hutiu, G., Bradu, A., & Podoleanu, A. G. (2014). Design and testing of prototype handheld scanning probes for optical coherence tomography. Journal of Engineering in Medicine, 228(8), 743-753. https://doi.org/10.1177/0954411914543963

  • DiMarzio, C. A., & Murray, T. W. (2003). Medical imaging techniques combining light and ultrasound. Subsurface Sensing Technologies and Applications, 4(4), 289-309. https://doi.org/10.1023/a:1026300631323

  • Duric, N., Littrup, P., Roy, O., Schmidt, S., Li, C., Bey-Knight, L., & Xiaoyang, C. (2013). Breast imaging with ultrasound tomography: Initial results with SoftVue. In 2013 IEEE International Ultrasonics Symposium (IUS) (pp. 382-385). IEEE Publishing. https://doi.org/10.1109/ULTSYM.2013.0099

  • Hafizah, M., Kok, T., & Spriyanto, E. (2010, May 29-31). 3D ultrasound image reconstruction based on VTK. In Proceedings of the 9th WSEAS International Conference on Signal Processing (pp. 102-106). Catania, Italy.

  • Halani, S., Foster, F. S., Breslavets, M., & Shear, N. H. (2018). Ultrasound and infrared-based imaging modalities for diagnosis and management of cutaneous diseases. Frontiers in Medicine, 5, 115-115. https://doi.org/10.3389/fmed.2018.00115

  • Huang, C., Wang, K., Nie, L., Wang, L. V., & Anastasio, M. A. (2013). Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. IEEE Transactions on Medical Imaging, 32(6), 1097-1110. https://doi.org/10.1109/tmi.2013.2254496

  • Kim, M., Jeng, G. S., Pelivanov, I., & O’Donnell, M. (2020). Deep-learning image reconstruction for real-time photoacoustic system. IEEE Transactions on Medical Imaging, 39(11), 3379-3390. https://doi.org/10.1109/tmi.2020.2993835

  • Kruizinga, P., Mastik, F., Koeze, D., de Jong, N., van der Steen, A. F., & van Soest, G. (2013). Ultrasound-guided photoacoustic image reconstruction: image completion and boundary suppression. Journal of Biomedical Optics, 18(9), 1-10. https://doi.org/10.1117/1.jbo.18.9.096017

  • Little, C., Colchester, R. J., Manmathan, G., Rakhit, R. D., & Desjardins, A. E. (2020). All-optical ultrasound: A new platform for intracoronary imaging. Journal of the American College of Cardiology, 75(11), 1348-1348. https://doi.org/10.1016/s0735-1097(20)31975-6

  • Manwar, R., Kratkiewicz, K., & Avanaki, K. (2020). Overview of ultrasound detection technologies for photoacoustic imaging. Micromachines, 11(7), Article 692. https://doi.org/10.3390/mi11070692

  • Nuster, R., Schmitner, N., Wurzinger, G., Gratt, S., Salvenmoser, W., Meyer, D., & Paltauf, G. (2013). Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection. Journal of Biophotonics, 6(6‐7), 549-559. https://doi.org/10.1002/jbio.201200223

  • Omidi, P., Zafar, M., Mozaffarzadeh, M., Hariri, A., Haung, X., Orooji, M., & Nasiriavanaki, M. (2018). A novel dictionary-based image reconstruction for photoacoustic computed tomography. Applied Sciences, 8(9), Article 1570. https://doi.org/10.3390/app8091570

  • Peyton, G., Boutelle, M. G., & Drakakis, E. M. (2018). Comparison of synthetic aperture architectures for miniaturised ultrasound imaging front-ends. BioMedical Engineering OnLine, 17(1), Article 83. https://doi.org/10.1186/s12938-018-0512-6

  • Thompson, D., Kruit, H., Gasteau, D., & Manohar, S. (2020). Laser-induced synthetic aperture ultrasound imaging. Journal of Applied Physics, 128(16), Article 163105. https://doi.org/10.1063/5.0023412

  • Trots, I., Nowicki, A., Lewandowski, M., & Tasinkevych, Y. (2011 ). Synthetic aperture method in ultrasound imaging. In M. Tanabe (Ed.), Ultrasound Imaging (pp. 37-56). IntechOpen.

  • Vu, T., Wang, Y., & Xia, J. (2018). Optimizing photoacoustic image reconstruction using cross-platform parallel computation. Visual Computing for Industry, Biomedicine, and Art, 1(1), 1-6. https://doi.org/10.1186/s42492-018-0002-5

  • Wissmeyer, G., Pleitez, M. A., Rosenthal, A., & Ntziachristos, V. (2018). Looking at sound: Optoacoustics with all-optical ultrasound detection. Light: Science & Applications, 7(1), Article 53. https://doi.org/10.1038/s41377-018-0036-7

  • Zhang, C., Zhang, Y., & Wang, Y. (2014). A photoacoustic image reconstruction method using total variation and nonconvex optimization. BioMedical Engineering OnLine, 13(1), Article 117. https://doi.org/10.1186/1475-925x-13-117

  • Zhang, J., He, Q., Xiao, Y., Zheng, H., Wang, C., & Luo, J. (2021). Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network. Medical Image Analysis, 70, Article 102018. https://doi.org/https://doi.org/10.1016/j.media.2021.102018

  • Zhang, X., Fincke, J. R., Wynn, C. M., Johnson, M. R., Haupt, R. W., & Anthony, B. W. (2019). Full noncontact laser ultrasound: First human data. Light: Science & Applications, 8(1), Article 119. https://doi.org/10.1038/s41377-019-0229-8

  • Zhao, T., Desjardins, A. E., Ourselin, S., Vercauteren, T., & Xia, W. (2019). Minimally invasive photoacoustic imaging: Current status and future perspectives. Photoacoustics, 16, Article 100146. https://doi.org/https://doi.org/10.1016/j.pacs.2019.100146