e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (2) Mar. 2024 / JST-4663-2023


A Review: Current Trend of Immersive Technologies for Indoor Navigation and the Algorithms

Muhammad Shazmin Sariman, Maisara Othman, Rohaida Mat Akir, Abd Kadir Mahamad and Munirah Ab Rahman

Pertanika Journal of Science & Technology, Volume 32, Issue 2, March 2024


Keywords: Augmented reality, deep learning, indoor navigation, mixed reality, shortest path, virtual reality

Published on: 26 March 2024

The term “indoor navigation system” pertains to a technological or practical approach that facilitates the navigation and orientation of individuals within indoor settings, such as museums, airports, shopping malls, or buildings. Over several years, significant advancements have been made in indoor navigation. Numerous studies have been conducted on the issue. However, a fair evaluation and comparison of indoor navigation algorithms have not been discussed further. This paper presents a comprehensive review of collective algorithms developed for indoor navigation. The in-depth analysis of these articles concentrates on both advantages and disadvantages, as well as the different types of algorithms used in each article. A systematic literature review (SLR) methodology guided our article-finding, vetting, and grading processes. Finally, we narrowed the pool down to 75 articles using SLR. We organized them into several groups according to their topics. In these quick analyses, we pull out the most important concepts, article types, rating criteria, and the positives and negatives of each piece. Based on the findings of this review, we can conclude that an efficient solution for indoor navigation that uses the capabilities of embedded data and technological advances in immersive technologies can be achieved by training the shortest path algorithm with a deep learning algorithm to enhance the indoor navigation system.

  • Abdallah, A. A., Jao, C. S., Kassas, Z. M., & Shkel, A. M. (2022). A pedestrian indoor navigation system using deep-learning-aided cellular signals and zupt-aided foot-mounted Imus. IEEE Sensors Journal, 22(6), 5188-5198.

  • Adege, A., Lin, H. P., Tarekegn, G., & Jeng, S. S. (2018). Applying deep neural network (DNN) for robust indoor localization in multi-building environment. Applied Sciences, 8(7), Article 1062.

  • Al-habashna, A., Wainer, G., & Aloqaily, M. (2022). Simulation modelling practice and theory machine learning-based indoor localization and occupancy estimation using 5G ultra-dense networks. Simulation Modelling Practice and Theory, 118, Article 102543.

  • Alani, S., Baseel, A., Hamdi, M. M., & Rashid, S. A. (2020). A hybrid technique for single-source shortest path-based on a* algorithm and ant colony optimization. IAES International Journal of Artificial Intelligence (IJ-AI), 9(2), Article 356.

  • Alves, R., De Morais, J. S., & Lopes, C. R. (2019). Indoor navigation with human assistance for service robots using D∗Lite. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 4106-4111). IEEE Publishing.

  • Babakhani, P., Merk, T., Mahlig, M., Sarris, I., Kalogiros, D., & Karlsson, P. (2021). Bluetooth direction finding using recurrent neural network. In 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (pp. 1-7). IEEE Publishing.

  • Bakale, V. A., Kumar V S, Y., Roodagi, V. C., Kulkarni, Y. N., Patil, M. S., & Chickerur, S. (2020). Indoor navigation with deep reinforcement learning. In 2020 International Conference on Inventive Computation Technologies (ICICT) (pp. 660-665). IEEE Publishing.

  • Chae, Y. J., Lee, H. W., Kim, J. H., Hwang, S. W., & Park, Y. Y. (2023). Design of a mixed reality system for simulating indoor disaster rescue. Applied Sciences, 13(7), Article 4418.

  • Chan, P. Y., Chao, J. C., & Wu, R. B. (2023). A Wi-Fi-based passive indoor positioning system via entropy-enhanced deployment of Wi-Fi sniffers. Sensors, 23(3), Article 1376.

  • Che, F., Ahmed, Q. Z., Lazaridis, P. I., Sureephong, P., & Alade, T. (2023). indoor positioning system (IPS) using ultra-wide bandwidth (UWB) for industrial internet of things (IIoT). Sensors, 23(12), Article 5710.

  • Chidsin, W., Gu, Y., & Goncharenko, I. (2021). AR-based navigation using RGB-D camera and hybrid map. Sustainability, 13(10), Article 5585.

  • Chumkamon, S., Tuvaphanthaphiphat, P., & Keeratiwintakorn, P. (2008). A blind navigation system using RFID for indoor environments. In 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (Vol. 2, pp. 765-768). IEEE Publishing.

  • Chung, H. L., Chin, K. Y., & Wang, C. S. (2021). Development of a head-mounted mixed reality museum navigation system. In 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII) (pp. 111-114). IEEE Publishing.

  • Dao, V. L., & Salman, S. M. (2022). Deep neural network for indoor positioning based on channel impulse response. In 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1-8). IEEE Publishing.

  • Dong, Z. Y., Xu, W. M., & Zhuang, H. (2018). Research on zigbee indoor technology positioning based on RSSI. Procedia Computer Science, 154, 424-429.

  • El-Sheimy, N., & Li, Y. (2021). Indoor navigation: State of the art and future trends. Satellite Navigation, 2(1), 1-23.

  • Espindola, A., Viegas, E. K., Traleski, A., Pellenz, M. E., & Santin, A. O. (2021). A deep autoencoder and RNN model for indoor localization with variable propagation loss. In 2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 391-396). IEEE Publishing.

  • Garcia, A., Mittal, S. S., Kiewra, E., & Ghose, K. (2019). A convolutional neural network feature detection approach to autonomous quadrotor indoor navigation. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 74-81). IEEE Publishing.

  • Ge, H., Sun, Z., Chiba, Y., & Koshizuka, N. (2022). Accurate indoor location awareness based on machine learning of environmental sensing data. Computers and Electrical Engineering, 98, Article 107676.

  • Gong, J., Ren, J., & Zhang, Y. (2021). DeepNav: A scalable and plug-and-play indoor navigation system based on visual CNN. Peer-to-Peer Networking and Applications, 14, 3718-3736.

  • Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 855-864). ACM Publishing.

  • Giney, S., Erdogan, A., Aktas, M., & Ergun, M. (2020). Wi-Fi based indoor positioning system with using deep neural network. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (pp. 225-228). IEEE Publishing.

  • Guo, Y., Zhu, J., Wang, Y., Chai, J., Li, W., Fu, L., Xu, B., & Gong, Y. (2020). A virtual reality simulation method for crowd evacuation in a multiexit indoor fire environment. ISPRS International Journal of Geo-Information, 9(12), Article 750.

  • Hoang, M. T., Yuen, B., Dong, X., Lu, T., Westendorp, R., & Reddy, K. (2019). Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet of Things Journal, 6(6), 10639-10651.

  • Hsieh, H. Y., Prakosa, S. W., & Leu, J. S. (2018). Towards the implementation of recurrent neural network schemes for WiFi fingerprint-based indoor positioning. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (pp. 1-5). IEEE Publishing.

  • Jamil, F., & Kim, D. (2019). Improving accuracy of the alpha–beta filter algorithm using an ANN-based learning mechanism in indoor navigation system. Sensor, 19(18), Article 3946.

  • Jang, J. W., & Hong, S. N. (2018). Indoor localization with WiFi fingerprinting using convolutional neural network. In 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 753-758). IEEE Publishing.

  • Jia, S. (2023). Analysis of path planning algorithms for service robots applied in indoor environments. Highlights in Science, Engineering and Technology, 52, 192-201.

  • Jiang, C., Chen, Y., Chen, C., Jia, J., Sun, H., Wang, T., & Hyyppa, J. (2022). Implementation and performance analysis of the PDR/GNSS integration on a smartphone. GPS Solutions, 26(3), Article 81.

  • Jothi, J. A. G., & Sabeenian, A. N. R. S. (2022). Design and development of an indoor navigation system using denoising autoencoder based convolutional neural network for visually impaired people. Multimedia Tools and Applications, 81(3), 3483-3514.

  • Jwo, D. J., Biswal, A., & Mir, I. A. (2023). Artificial neural networks for navigation systems: A review of recent research. Applied Sciences, 13(7), Article 4475.

  • Khan, S., Patil, A., Kadam, G., & Jadhav, A. (2020). Indoor navigation in stadium using virtual reality. ITM Web of Conferences, 32, Article 03002.

  • Kasim, S., Xia, L. Y., Wahid, N., Fudzee, M. F. M., Mahdin, H., Ramli, A. A., Suparjoh, S., & Salamat, M. A. (2016). Indoor navigation using a* algorithm. In Recent Advances on Soft Computing and Data Mining: The Second International Conference on Soft Computing and Data Mining (SCDM-2016), Bandung, Indonesia, August 18-20, 2016 Proceedings Second (pp. 598-607). Springer International Publishing.

  • Kunhoth, J., Karkar, A. G., Al-Maadeed, S., & Al-Ali, A. (2020). Indoor positioning and wayfinding systems: A survey. Human-centric Computing and Information Sciences, 10(1), 1-41.

  • Lee, J., Jin, F., Kim, Y., & Lindlbauer, D. (2022). User preference for navigation instructions in mixed reality. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 802-811). IEEE Publishing.

  • Lee, S., Park, S., Kim, S., Lee, S. H., Lee, S., Member, S., & Park, S. (2017.) Indoor navigation system for evacuation route in case of fire by using environment and location data. In 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan) (pp. 1-2). IEEE Publishing.

  • Li, Y., Gao, Z., He, Z., Zhuang, Y., Radi, A., Chen, R., & El-Sheimy, N. (2019). Wireless fingerprinting uncertainty prediction based on machine learning. Sensors, 19(2), Article 324.

  • Liang, L., & Tang, R. (2018). An improved collaborative filtering algorithm based on Node2vec. In Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence (pp. 218-222). ACM Publishing.

  • Liu, B., Ding, L., & Meng, L. (2021). Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation. Cartography and Geographic Information Science, 48(4), 305-319.

  • Liu, P., Li, Y., Ai, S., Luo, C., & Yang, C. (2022). An improved dijkstra-based algorithm for resource constrained shortest path. In 2022 9th International Conference on Dependable Systems and Their Applications (DSA) (pp. 368-373). IEEE Publishing.

  • Liu, S., Ren, Q., Li, J., & Xu, H. (2021). DeepLoc: Deep neural network-based indoor positioning framework. In 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys) (pp. 1735-1740). IEEE Publishing.

  • Liu, Z., Li, D., Yang, Y., Chen, X., Lv, X., & Li, X. (2021). Design and implementation of the optimization algorithm in the layout of parking lot guidance. Wireless Communications and Mobile Computing, 2021, 1-6.

  • Liu, Z., Liu, J., Xu, X., & Wu, K. (2022). DeepGPS: Deep learning enhanced GPS positioning in urban canyons. IEEE Transactions on Mobile Computing, 23(1), 376-392.

  • Malik, R. F., Gustifa, R., Farissi, A., Stiawan, D., Ubaya, H., Ahmad, M. R., & Khirbeet, A. S. (2019). The indoor positioning system using fingerprint method based deep neural network. IOP Conference Series: Earth and Environmental Science, 248, Article 012077.

  • Nessa, A., Adhikari, B., Hussain, F., & Fernando, X. N. (2020). A survey of machine learning for indoor positioning. IEEE Access, 8, 214945-214965.

  • Oh, S. H., & Kim, J. G. (2021). DNN based WiFi positioning in 3GPP indoor office environment. In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 302-306). IEEE.

  • Parimala, M., Broumi, S., Prakash, K., & Topal, S. (2021). Bellman–Ford algorithm for solving shortest path problem of a network under picture fuzzy environment. Complex and Intelligent Systems, 7(5), 2373-2381.

  • Rachmawati, D., & Gustin, L. (2020). Analysis of Dijkstra’s algorithm and A∗ algorithm in shortest path problem. Journal of Physics: Conference Series, 1566, Article 012061.

  • Rai, A. (2022). A study on Bellman Ford algorithm for shortest path detection in global positioning system. International Journal for Research in Applied Science and Engineering Technology, 10(5), 2118-2126.

  • Ramadiani, Bukhori, D., Azainil, & Dengen, N. (2018). Floyd-warshall algorithm to determine the shortest path based on android. IOP Conference Series: Earth and Environmental Science, 144, Article 012019.

  • Real, S., & Araujo, A. (2021). Ves: A mixed-reality development platform of navigation systems for blind and visually impaired. Sensors, 21(18), Article 6275.

  • Rehman, U., & Cao, S. (2017). Augmented-reality-based indoor navigation: A comparative analysis of handheld devices versus google glass. IEEE Transactions on Human-Machine Systems, 47(1), 140-151.

  • Rizi, F. S., Schloetterer, J., & Granitzer, M. (2018). Shortest path distance approximation using deep learning techniques. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 1007-1014). IEEE Publishing.

  • Rochadiani, T. H., Atmojo, W. T., Bari, M., Kristina, E., Renaldi, & Setiawan, A. (2022). Find: Mall navigation using augmented reality. In 2022 8th International Conference on Virtual Reality (ICVR) (pp. 110-115). IEEE Publishing.

  • Rubio-Sandoval, J. I., Martinez-Rodriguez, J. L., Lopez-Arevalo, I., Rios-Alvarado, A. B., Rodriguez-Rodriguez, A. J., & Vargas-Requena, D. T. (2021). An indoor navigation methodology for mobile devices by integrating augmented reality and semantic web. Sensors, 21(16), Article 5435.

  • Saeliw, A., Hualkasin, W., & Puttinaovarat, S. (2022a). Indoor navigation application in shopping mall based on augmented reality (AR). TEM Journal, 11(3), 1119-1127.

  • Samah, K. A. F. A., Sharip, A. A., Musirin, I., Sabri, N., & Salleh, M. H. (2020). Reliability study on the adaptation of Dijkstra’s algorithm for gateway KLIA2 indoor navigation. Bulletin of Electrical Engineering and Informatics, 9(2), 594-601.

  • Sarkar, T., Ghosh, A., Chakraborty, S., Singh, L. L., & Chattopadhyay, S. (2021). A new insightful exploration into a low profile ultra-wide-band (UWB) microstrip antenna for DS-UWB applications. Journal of Electromagnetic Waves and Applications, 35(15), 2001-2019.

  • Shahbazian, R., Macrina, G., Scalzo, E., & Guerriero, F. (2023). Machine learning assists IOT localization: A review of current challenges and future trends. Sensors, 23(7), Article 3551.

  • Syazwani, C. J. N., Wahab, N. H. A., Sunar, N., Ariffin, S. H. S., Wong, K. Y., & Aun, Y. (2022). Indoor positioning system: A review. International Journal of Advanced Computer Science and Applications, 13(6), 477-490.

  • Tamimi, A. A. (2015). Comparison studies for different shortest path algorithms. International Journal Of Computers & Technology, 14(8), 5979-5986.

  • Trybała, P., & Gattner, A. (2021). Development of a building topological model for indoor navigation. IOP Conference Series: Earth and Environmental Science, 684, Article 012031.

  • Varma, P. S., & Anand, V. (2021). Indoor localization for IoT applications: Review, challenges and manual site survey approach. In 2021 IEEE Bombay Section Signature Conference (IBSSC) (pp. 1-6). IEEE Publishing.

  • Verma, P., Agrawal, K., & Sarasvathi, V. (2020). Indoor navigation using augmented reality. In Proceedings of the 2020 4th International Conference on Virtual and Augmented Reality Simulations (pp. 58-63). ACM Publishing.

  • Wang, H., Lou, S., Jing, J., Wang, Y., Liu, W., & Liu, T. (2022). The EBS-A* algorithm: An improved A* algorithm for path planning. PLoS ONE, 17(2), Article e0263841.

  • Wang, Y., Li, Z., Gao, J., & Zhao, L. (2020). Deep neural network‐based Wi‐Fi/pedestrian dead reckoning indoor positioning system using adaptive robust factor graph model. IET Radar, Sonar & Navigation, 14(1), 36-47.

  • Woensel, W. Van, Roy, P. C., Sibte, S., Abidi, R., & Raza, S. (2020). Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods. Artificial Intelligence In Medicine, 108, Article 101931.

  • Wu, J. H., Huang, C. T., Huang, Z. R., Chen, Y. B., & Chen, S. C. (2020). A rapid deployment indoor positioning architecture based on image recognition. In 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 784-789). IEEE.

  • Yang, G., & Saniie, J. (2017). Indoor navigation for visually impaired using AR markers. In 2017 IEEE International Conference on Electro Information Technology (EIT) (pp. 1-5). IEEE Publishing.

  • Yeh, S. C., Hsu, W. H., Lin, W. Y., & Wu, Y. F. (2020). Study on an indoor positioning system using earth’s magnetic field. IEEE Transactions on Instrumentation and Measurement, 69(3), 865-872.

  • Yoon, J. W., & Lee, S. H. (2023). Development of a construction-site work support system using BIM-marker-based augmented reality. Sustainability, 15(4), Article 3222.

  • Yu, J., Saad, H. M., & Buehrer, R. M. (2020). Centimeter-level indoor localization using channel state information with recurrent neural networks. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS) (pp. 1317-1323). IEEE Publishing.

  • Yuan, J., Chen, R., & Yu, P. (2023). Application of navigation grid corner point algorithm in virtual reality simulation images of indoor fire evacuation. Internet of Things, 22, Article 100716.

  • Zhou, T., Ku, J., Lian, B., & Zhang, Y. (2022). Indoor positioning algorithm based on improved convolutional neural network. Neural Computing and Applications, 34(9), 6787-6798.

  • Zlatanova, S., Sithole, G., Nakagawa, M., & Zhu, Q. (2013). Problems in indoor mapping and modelling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(4W4), 63-68.