e-ISSN 2231-8542
ISSN 1511-3701
Aisyah Humaira Alias, Edi Syams Zainudin, Mohd Nurazzi Mohd Norizan and Ahmad Ilyas Rushdan
Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023
DOI: https://doi.org/10.47836/pjst.31.S1.04
Keywords: Durian waste, insulation board, mechanical properties, physical properties, thermal properties
Published on: 27 October 2023
Durian is Malaysia''s most popular seasonal fruit, but less than half of the durian fruit is consumed as food. Durian is a type of fruit with a high percentage of waste, which becomes an environmental problem when discarded into the landfill site. Therefore, it is important to utilise durian waste as a potential natural fibre-based composite reinforcement. Durian skin residue is recognised as one of the potential lignocellulosic materials to replace wood in the insulation board industry. The present study aims to develop a low-cost insulation board using durian skin residues as reinforcing materials. Single-layer mats were manually formed, followed by hot pressing using polymeric methane diphenyl diisocyanate (PMDI) resin. The effect of different percentages of PMDI resin (0, 6, 8 and 10%) on the board's physical, mechanical, morphological, and thermal properties was investigated. It was found that 6% PMDI resin is the optimised resin amount to produce PMDI/durian skin fibre composite, and the board with 6% PMDI has the maximum static bending due to enhanced cross-linking by the fibre. In terms of thermal stability and conductivity, the incorporation of 6% of PMDI is considered the best formulation based on the value achieved. The overall results indicated that this study addresses a low-cost innovation for commercial insulation boards as it utilises durian waste and a low dosage of PMDI for implementation in the building and construction industry.
Adunphatcharaphon, S., Petchkongkaew, A., Greco, D., D’Ascanio, V., Visessanguan, W., & Avantaggiato, G. (2020). The effectiveness of durian peel as a multi-mycotoxin adsorbent. Toxins, 12(2), 108. https://doi.org/10.3390/toxins12020108
Aimi, M. N., Anuar, H., Maizirwan, M., Sapuan, S. M., Wahit, M. U., & Zakaria, S. (2015). Preparation of durian skin nanofibre (DSNF) and its effect on the properties of polylactic acid (PLA) biocomposites. Sains Malaysiana, 44(11), 1551-1559.
Aimi, N. N., Anuar, H., Manshor, M. R., Nazri, W. W., & Sapuan, S. M. (2014). Optimizing the parameters in durian skin fibre reinforced polypropylene composites by response surface methodology. Industrial Crops and Products, 54, 291-295. https://doi.org/10.1016/j.indcrop.2014.01.016
Aisyah, H. A., Paridah, M. T., Sapuan, S. M., Khalina, A., Berkalp, O. B., Lee, S. H., Lee, C. H., Nurazzi, N.M., Ramli, N., Wahab, M. S. & Ilyas, R. A. (2019). Thermal properties of woven kenaf/carbon fibre-reinforced epoxy hybrid composite panels. International Journal of Polymer Science, 2019, 1-8. https://doi.org/10.1155/2019/5258621
Alamri, H., & Low, I. M. (2012). Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing, 31(5), 620-628. https://doi.org/10.1016/j.polymertesting.2012.04.002
Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 47(8), 2153-2183. https://doi.org/10.1177/15280837166544
Ali, A., Shaker, K., Nawab, Y., Ashraf, M., Basit, A., Shahid, S., & Umair, M. (2015). Impact of hydrophobic treatment of jute on moisture regain and mechanical properties of composite material. Journal of Reinforced Plastics and Composites, 34(24), 2059-2068. https://doi.org/10.1177/0731684415610007
Alomayri, T., Assaedi, H., Shaikh, F. U. A., & Low, I. M. (2014). Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. Journal of Asian Ceramic Societies, 2(3), 223-230. https://doi.org/10.1016/j.jascer.2014.05.005
Asyraf, M. R. M., Syamsir, A., Ishak, M. R., Sapuan, S. M., Nurazzi, N. M., Norrrahim, M. N. F., Ilyas, R. A., Khan, T., & Rashid, M. Z. A. (2023). Mechanical properties of hybrid lignocellulosic fiber-reinforced biopolymer green composites: A review. Fibers and Polymers, 24(2), 337-353. https://doi.org/10.1007/s12221-023-00034-w
Asyraf, M. R. M., Nurazzi, N. M., Norrrahim, M. N. F., Hazrati, K. Z., Ghani, A., Sabaruddin, F. A., Lee, S. H., Shazleen, S. S., & Razman, M. R. (2023). Thermal properties of oil palm lignocellulosic fibre reinforced polymer composites: A comprehensive review on thermogravimetry analysis. Cellulose, 30(5), 2753-2790. https://doi.org/10.1007/s10570-023-05080-4
Asyraf, M. R. M., Rafidah, M., Ebadi, S., Azrina, A., & Razman, M. R. (2022). Mechanical properties of sugar palm lignocellulosic fibre reinforced polymer composites: A review. Cellulose, 29(12), 6493-6516. https://doi.org/10.1007/s10570-022-04695-3
ASTM D1895. (2003). Standard test methods for direct moisture content measurement of wood and wood-base materials. ASTM International. https://www.astm.org/d4442-92r03.html
ASTM E1640. (2018). Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis. ASTM International. https://www.astm.org/e1640-18.html
ASTM D1037. (2020). Standard test methods for evaluating properties of wood-base fibre and particle panel materials. ASTM International. https://www.astm.org/d1037-12r20.html
ASTM E1131. (2020). Standard test method for compositional analysis by thermogravimetry ASTM International. https://www.astm.org/e1131-20.html
ASTM C518. (2021). Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. ASTM International. https://www.astm.org/c0518-21.html
ASTM D3418. (2021). Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International. https://www.astm.org/d3418-21.html
ASTM D2395. (2022). Standard test methods for density and specific gravity (relative density) of wood and wood-based materials. ASTM International. https://www.astm.org/d2395-17r22.html
Azammi, A. N., Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Atikah, M. S. N., Asrofi, M., & Atiqah, A. (2020). Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In Interfaces in particle and fibre reinforced composites (pp. 29-93). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102665-6.00003-0
Azlin, M. N. M., Sapuan, S. M., Zuhri, M. Y. M., Zainudin, E. S., & Ilyas, R. A. (2022). Thermal stability, dynamic mechanical analysis and flammability properties of woven kenaf/polyester-reinforced polylactic acid hybrid laminated composites. Polymers, 14(13), 2690. https://doi.org/10.3390/polym14132690
Azman, M. A., Asyraf, M. R. M., Khalina, A., Petrů, M., Ruzaidi, C. M., Sapuan, S. M., Wan Nik, W. B., Ishak, M. R., Ilyas, R. A., & Suriani, M. J. (2021). Natural fiber reinforced composite material for product design: A short review. Polymers, 13(12), 1917. https://doi.org/10.3390/polym13121917
Chee, S. S., Jawaid, M., Sultan, M. T. H., Alothman, O. Y., & Abdullah, L. C. (2019). Accelerated weathering and soil burial effects on colour, biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polymer Testing, 79, 106054. https://doi.org/10.1016/j.polymertesting.2019.106054
Corumlu, V., Ozsoy, A., & Ozturk, M. (2018). Fabrication and investigation of silver water nanofluids for long-term heat transfer application. In I. Dincer., C. Ozgur Colpan., & O. Kizilkan (Eds.), Exergetic, energetic and environmental dimensions (pp. 779-791). Academic Press. https://doi.org/10.1016/B978-0-12-813734-5.00044-5
E’zzati, M. S. N., Anuar, H., & Salimah, A. S. M. (2018). Effect of coupling agent on durian skin fibre nanocomposite reinforced polypropylene. IOP Conference Series: Materials Science and Engineering, 290(1), 012032. https://doi.org/ 10.1088/1757-899X/290/1/012032
El-Shekeil, Y. A., Sapuan, S. M., Abdan, K., Zainudin, E. S., & Al-Shuja’a, O. M. (2012). Effect of pMDI isocyanate additive on mechanical and thermal properties of kenaf fibre reinforced thermoplastic polyurethane composites. Bulletin of Materials Science, 35(7), 1151-1155.
Hetayothin, B. (2010). Effect of structure and plasticizer on the glass transition of adsorbed polymer [Doctoral dissertation, Missouri University of Science and Technology]. Missouri University of Science and Technology. https://scholarsmine.mst.edu/doctoral_dissertations/1901/
Ho, L. H., & Bhat, R. (2015). Exploring the potential nutraceutical values of durian (Durio zibethinus L.)–An exotic tropical fruit. Food Chemistry, 168, 80-89. https://doi.org/10.1016/j.foodchem.2014.07.020
Ibraheem, S. A., Ali, A., & Khalina, A. (2011). Development of green insulation boards from kenaf fibres and polyurethane. Polymer-plastics Technology and Engineering, 50(6), 613-621. https://doi.org/10.1080/03602559.2010.551379
Jani, S. M., & Izran, K. (2013). Mechanical and physical properties of ureaformaldehyde bonded kenaf core particle boards. Journal of Tropical Agriculture and Food Science, 41(2), 341-347.
Jesuarockiam, N., Jawaid, M., Zainudin, E. S., Thariq Hameed Sultan, M., & Yahaya, R. (2019). Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers, 11(7), 1085. https://doi.org/10.3390/polym11071085
Khedari, J., Charoenvai, S., & Hirunlabh, J. (2003). New insulating particleboards from durian peel and coconut coir. Building and Environment, 38(3), 435-441. https://doi.org/10.1016/S0360-1323(02)00030-6
Khedari, J., Nankongnab, N., Hirunlabh, J., & Teekasap, S. (2004). New low-cost insulation particleboards from mixture of durian peel and coconut coir. Building and Environment, 39(1), 59-65. https://doi.org/10.1016/j.buildenv.2003.08.001
Koay, S. C., Subramanian, V., Chan, M. Y., Pang, M. M., Tsai, K. Y., & Cheah, K. H. (2018). Preparation and characterisation of wood plastic composite made up of durian husk fibre and recycled polystyrene foam. MATEC Web of Conferences, 152, 02019. https://doi.org/10.1051/matecconf/201815202019
Kusumah, S. S., Umemura, K., Guswenrivo, I., Yoshimura, T., & Kanayama, K. (2017). Utilisation of sweet sorghum bagasse and citric acid for manufacturing of particleboard II: influences of pressing temperature and time on particleboard properties. Journal of Wood Science, 63(2), 161-172.
Liu, R., Long, L., Sheng, Y., Xu, J., Qiu, H., Li, X., Wang, Y., & Wu, H. (2019). Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Industrial Crops and Products, 141, 111732. https://doi.org/10.1016/j.indcrop.2019.111732
Luamkanchanaphan, T., Chotikaprakhan, S., & Jarusombati, S. (2012). A study of physical, mechanical and thermal properties for thermal insulation from narrow-leaved cattail fibres. APCBEE Procedia, 1, 46-52. https://doi.org/10.1016/j.apcbee.2012.03.009
Mandal, S., & Alam, S. (2012). Dynamic mechanical analysis and morphological studies of glass/bamboo fibre reinforced unsaturated polyester resin‐based hybrid composites. Journal of Applied Polymer Science, 125(S1), E382-E387. https://doi.org/10.1002/app.36304
Manohar, K. (2012). Experimental investigation of building thermal insulation from agricultural by-products. British Journal of Applied Science & Technology, 2(3), 227-239.
Manshor, M. R., Anuar, H., Aimi, M. N., Fitrie, M. A., Nazri, W. W., Sapuan, S. M., El-Shekeil, Y. A., & Wahit, M. U. (2014). Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Materials & Design, 59, 279-286. https://doi.org/10.1016/j.matdes.2014.02.062
Manshor, R. M., Anuar, H., Wan Nazri, W. B., & Fitrie, M. I. (2012). Preparation and characterisation of physical properties of durian skin fibres biocomposite. Advanced Materials Research, 576, 212-215. https://doi.org/10.4028/www.scientific.net/AMR.576.212
Masrifah, A., Setyaningrum, H., Susilo, A., & Haryadi, I. (2021). Perancangan Sistem Pengelolaan Limbah Durian Layak Kompos Di Agrowisata Kampung Durian Ponorogo. Engagement: Jurnal Pengabdian Kepada Masyarakat, 5(1), 268-282.
Mohammed, B. R., Leman, Z., Jawaid, M., Ghazali, M. J., & Ishak, M. R. (2017). Dynamic mechanical analysis of treated and untreated sugar palm fibre-based phenolic composites. BioResources, 12(2), 3448-3462.
Mossello, A. A., Harun, J., Shamsi, S. R. F., Resalati, H., Tahir, P. M., Rushdan, I., & Mohmamed, A. Z. (2010). A review of literatures related to kenaf as a alternative for pulpwoods. Agricultural Journal, 5(3), 131-138.
Nazri, W., Ezdiani, Z., Romainor, M., Erma, K. S., Jurina, J., & Fadzlina, I. N. (2014). Effect of fibre loading on mechanical properties of durian skin fibre composite. Journal of Tropical Agricultural Food Science, 42(2), 169-174.
Norfarhana, A. S., Ilyas, R. A., & Ngadi, N. (2022). A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydrate Polymers, Article 119563. https://doi.org/10.1016/j.carbpol.2022.119563.
Nurazzi, N. M., Norli, A., Norrrahim, M. N. F., Rafiqah, S. A., Khalina, A., Sapuan, S. M., & Ilyas, R. A. (2021). Thermal properties of sugar palm yarn reinforced unsaturated polyester composites as an alternative for automotive applications. In S. M., Sapuan., & R. A., Ilyas (Eds.) Biocomposite and synthetic composites for automotive applications (pp. 19-49). Woodhead Publishing.
Ostendorf, K., Ahrens, C., Beulshausen, A., Tene Tayo, J. L., & Euring, M. (2021). On the feasibility of a pMDI-reduced production of wood fibre insulation boards by means of kraft lignin and ligneous canola hulls. Polymers, 13(7), 1088. https://doi.org/10.3390/polym13071088
Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732-1739. https://doi.org/10.1016/j.enbuild.2011.03.015
Payus, C. M., Refdin, M. A., Zahari, N. Z., Rimba, A. B., Geetha, M., Saroj, C., Gasparatos, A., Fukushi, K., & Oliver, P. A. (2021). Durian husk wastes as low-cost adsorbent for physical pollutants removal: Groundwater supply. Materials Today: Proceedings, 42(1), 80-87. https://doi.org/10.1016/j.matpr.2020.10.006
Penjumras, P., Rahman, R. A., Talib, R. A., & Abdan, K. (2015). Mechanical properties and water absorption behaviour of durian rind cellulose reinforced poly (lactic acid) biocomposites. International Journal on Advanced Science, Engineering and Information Technology, 5(5), 343-349.
Ramlee, N. A., Jawaid, M., Ismail, A. S., Zainudin, E. S., & Yamani, S. A. K. (2021). Evaluation of thermal and acoustic properties of oil palm empty fruit bunch/sugarcane bagasse fibres based hybrid composites for wall buildings thermal insulation. Fibres and Polymers, 22(9), 2563-2571.
Razali, N., Sultan, M. T. H., Shah, A. U. M., & Safri, S. N. A. (2021). Low velocity impact characterisation of flax/kenaf/glass fibre reinforced epoxy hybrid composites. In M. Thariq Hameed Sultan, A. U., Md Shah., & N., Saba (Eds.) Impact Studies of Composite Materials (pp. 195-208). Springer.
Saad, M. J., & Kamal, I. (2012). Mechanical and physical properties of low density kenaf core particleboards bonded with different resins. Journal of Science and Technology, 4(1), 17-32.
Sabaruddin, F. A., Paridah, M. T., Sapuan, S. M., Ilyas, R. A., Lee, S. H., Abdan, K., Mazlan, N., Roseley, A. S. M., & Khalil, H. P. S. (2020). The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers, 13(1), 116. https://doi.org/10.3390/polym13010116.
Sahoo, S., Misra, M., & Mohanty, A. K. (2011). Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Composites Part A: Applied Science and Manufacturing, 42(11), 1710-1718. https://doi.org/10.1016/j.compositesa.2011.07.025
San Ha, N., Lu, G., Shu, D., & Yu, T. X. (2020). Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). Journal of the Mechanical Behaviour of Biomedical Materials, 104, 103603. https://doi.org/10.1016/j.jmbbm.2019.103603
Sargent, R. (2019). Evaluating dimensional stability in solid wood: A review of current practice. Journal of Wood Science, 65(1), 1-11.
Shaker, K., Umair, M., Shahid, S., Jabbar, M., Ullah Khan, R. M. W., Zeeshan, M., & Nawab, Y. (2022). Cellulosic fillers extracted from Argyreia speciose waste: a potential reinforcement for composites to enhance properties. Journal of Natural Fibers, 19(11), 4210-4222. https://doi.org/10.1080/15440478.2020.1856271
Shaker, K., Khan, R. M. W. U., Jabbar, M., Umair, M., Tariq, A., Kashif, M., & Nawab, Y. (2020). Extraction and characterization of novel fibers from Vernonia elaeagnifolia as a potential textile fiber. Industrial Crops and Products, 152, 112518. https://doi.org/10.1016/j.indcrop.2020.112518
Shih, Y. F., Lee, W. C., Jeng, R. J., & Huang, C. M. (2006). Water bamboo husk‐reinforced poly (butylene succinate) biodegradable composites. Journal of Applied Polymer Science, 99(1), 188-199. https://doi.org/10.1002/app.22220
Wong, E. D., Zhang, M., Han, G., Kawai, S., & Wang, Q. (2000). Formation of the density profile and its effects on the properties of fibreboard. Journal of Wood Science, 46(3), 202-209.
Yousefi, J., Mohamadi, R., Saeedifar, M., Ahmadi, M., & Hosseini-Toudeshky, H. (2016). Delamination characterisation in composite laminates using acoustic emission features, micro visualization and finite element modeling. Journal of Composite Materials, 50(22), 3133-3145. https://doi.org/10.1177/00219983156156
Yuan, C., Chen, W., Pham, T. M., & Hao, H. (2019). Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete. Composites Part B: Engineering, 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089
Zakaria, A. A. (2020). Managing Durian Orchards in Malaysia. Universiti Putra Malaysia Press.
ISSN 1511-3701
e-ISSN 2231-8542