PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 31 (S1) 2023 / JST(S)-0587-2023

 

Development and Characterisation of Biocomposite Insulator Board from Durian Skin Fibres

Aisyah Humaira Alias, Edi Syams Zainudin, Mohd Nurazzi Mohd Norizan and Ahmad Ilyas Rushdan

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023

DOI: https://doi.org/10.47836/pjst.31.S1.04

Keywords: Durian waste, insulation board, mechanical properties, physical properties, thermal properties

Published on: 27 October 2023

Durian is Malaysia''s most popular seasonal fruit, but less than half of the durian fruit is consumed as food. Durian is a type of fruit with a high percentage of waste, which becomes an environmental problem when discarded into the landfill site. Therefore, it is important to utilise durian waste as a potential natural fibre-based composite reinforcement. Durian skin residue is recognised as one of the potential lignocellulosic materials to replace wood in the insulation board industry. The present study aims to develop a low-cost insulation board using durian skin residues as reinforcing materials. Single-layer mats were manually formed, followed by hot pressing using polymeric methane diphenyl diisocyanate (PMDI) resin. The effect of different percentages of PMDI resin (0, 6, 8 and 10%) on the board's physical, mechanical, morphological, and thermal properties was investigated. It was found that 6% PMDI resin is the optimised resin amount to produce PMDI/durian skin fibre composite, and the board with 6% PMDI has the maximum static bending due to enhanced cross-linking by the fibre. In terms of thermal stability and conductivity, the incorporation of 6% of PMDI is considered the best formulation based on the value achieved. The overall results indicated that this study addresses a low-cost innovation for commercial insulation boards as it utilises durian waste and a low dosage of PMDI for implementation in the building and construction industry.

  • Adunphatcharaphon, S., Petchkongkaew, A., Greco, D., D’Ascanio, V., Visessanguan, W., & Avantaggiato, G. (2020). The effectiveness of durian peel as a multi-mycotoxin adsorbent. Toxins, 12(2), 108. https://doi.org/10.3390/toxins12020108

  • Aimi, M. N., Anuar, H., Maizirwan, M., Sapuan, S. M., Wahit, M. U., & Zakaria, S. (2015). Preparation of durian skin nanofibre (DSNF) and its effect on the properties of polylactic acid (PLA) biocomposites. Sains Malaysiana, 44(11), 1551-1559.

  • Aimi, N. N., Anuar, H., Manshor, M. R., Nazri, W. W., & Sapuan, S. M. (2014). Optimizing the parameters in durian skin fibre reinforced polypropylene composites by response surface methodology. Industrial Crops and Products, 54, 291-295. https://doi.org/10.1016/j.indcrop.2014.01.016

  • Aisyah, H. A., Paridah, M. T., Sapuan, S. M., Khalina, A., Berkalp, O. B., Lee, S. H., Lee, C. H., Nurazzi, N.M., Ramli, N., Wahab, M. S. & Ilyas, R. A. (2019). Thermal properties of woven kenaf/carbon fibre-reinforced epoxy hybrid composite panels. International Journal of Polymer Science, 2019, 1-8. https://doi.org/10.1155/2019/5258621

  • Alamri, H., & Low, I. M. (2012). Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing, 31(5), 620-628. https://doi.org/10.1016/j.polymertesting.2012.04.002

  • Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 47(8), 2153-2183. https://doi.org/10.1177/15280837166544

  • Ali, A., Shaker, K., Nawab, Y., Ashraf, M., Basit, A., Shahid, S., & Umair, M. (2015). Impact of hydrophobic treatment of jute on moisture regain and mechanical properties of composite material. Journal of Reinforced Plastics and Composites, 34(24), 2059-2068. https://doi.org/10.1177/0731684415610007

  • Alomayri, T., Assaedi, H., Shaikh, F. U. A., & Low, I. M. (2014). Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. Journal of Asian Ceramic Societies, 2(3), 223-230. https://doi.org/10.1016/j.jascer.2014.05.005

  • Asyraf, M. R. M., Syamsir, A., Ishak, M. R., Sapuan, S. M., Nurazzi, N. M., Norrrahim, M. N. F., Ilyas, R. A., Khan, T., & Rashid, M. Z. A. (2023). Mechanical properties of hybrid lignocellulosic fiber-reinforced biopolymer green composites: A review. Fibers and Polymers, 24(2), 337-353. https://doi.org/10.1007/s12221-023-00034-w

  • Asyraf, M. R. M., Nurazzi, N. M., Norrrahim, M. N. F., Hazrati, K. Z., Ghani, A., Sabaruddin, F. A., Lee, S. H., Shazleen, S. S., & Razman, M. R. (2023). Thermal properties of oil palm lignocellulosic fibre reinforced polymer composites: A comprehensive review on thermogravimetry analysis. Cellulose, 30(5), 2753-2790. https://doi.org/10.1007/s10570-023-05080-4

  • Asyraf, M. R. M., Rafidah, M., Ebadi, S., Azrina, A., & Razman, M. R. (2022). Mechanical properties of sugar palm lignocellulosic fibre reinforced polymer composites: A review. Cellulose, 29(12), 6493-6516. https://doi.org/10.1007/s10570-022-04695-3

  • ASTM D1895. (2003). Standard test methods for direct moisture content measurement of wood and wood-base materials. ASTM International. https://www.astm.org/d4442-92r03.html

  • ASTM E1640. (2018). Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis. ASTM International. https://www.astm.org/e1640-18.html

  • ASTM D1037. (2020). Standard test methods for evaluating properties of wood-base fibre and particle panel materials. ASTM International. https://www.astm.org/d1037-12r20.html

  • ASTM E1131. (2020). Standard test method for compositional analysis by thermogravimetry ASTM International. https://www.astm.org/e1131-20.html

  • ASTM C518. (2021). Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. ASTM International. https://www.astm.org/c0518-21.html

  • ASTM D3418. (2021). Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International. https://www.astm.org/d3418-21.html

  • ASTM D2395. (2022). Standard test methods for density and specific gravity (relative density) of wood and wood-based materials. ASTM International. https://www.astm.org/d2395-17r22.html

  • Azammi, A. N., Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Atikah, M. S. N., Asrofi, M., & Atiqah, A. (2020). Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In Interfaces in particle and fibre reinforced composites (pp. 29-93). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102665-6.00003-0

  • Azlin, M. N. M., Sapuan, S. M., Zuhri, M. Y. M., Zainudin, E. S., & Ilyas, R. A. (2022). Thermal stability, dynamic mechanical analysis and flammability properties of woven kenaf/polyester-reinforced polylactic acid hybrid laminated composites. Polymers, 14(13), 2690. https://doi.org/10.3390/polym14132690

  • Azman, M. A., Asyraf, M. R. M., Khalina, A., Petrů, M., Ruzaidi, C. M., Sapuan, S. M., Wan Nik, W. B., Ishak, M. R., Ilyas, R. A., & Suriani, M. J. (2021). Natural fiber reinforced composite material for product design: A short review. Polymers, 13(12), 1917. https://doi.org/10.3390/polym13121917

  • Chee, S. S., Jawaid, M., Sultan, M. T. H., Alothman, O. Y., & Abdullah, L. C. (2019). Accelerated weathering and soil burial effects on colour, biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polymer Testing, 79, 106054. https://doi.org/10.1016/j.polymertesting.2019.106054

  • Corumlu, V., Ozsoy, A., & Ozturk, M. (2018). Fabrication and investigation of silver water nanofluids for long-term heat transfer application. In I. Dincer., C. Ozgur Colpan., & O. Kizilkan (Eds.), Exergetic, energetic and environmental dimensions (pp. 779-791). Academic Press. https://doi.org/10.1016/B978-0-12-813734-5.00044-5

  • E’zzati, M. S. N., Anuar, H., & Salimah, A. S. M. (2018). Effect of coupling agent on durian skin fibre nanocomposite reinforced polypropylene. IOP Conference Series: Materials Science and Engineering, 290(1), 012032. https://doi.org/ 10.1088/1757-899X/290/1/012032

  • El-Shekeil, Y. A., Sapuan, S. M., Abdan, K., Zainudin, E. S., & Al-Shuja’a, O. M. (2012). Effect of pMDI isocyanate additive on mechanical and thermal properties of kenaf fibre reinforced thermoplastic polyurethane composites. Bulletin of Materials Science, 35(7), 1151-1155.

  • Hetayothin, B. (2010). Effect of structure and plasticizer on the glass transition of adsorbed polymer [Doctoral dissertation, Missouri University of Science and Technology]. Missouri University of Science and Technology. https://scholarsmine.mst.edu/doctoral_dissertations/1901/

  • Ho, L. H., & Bhat, R. (2015). Exploring the potential nutraceutical values of durian (Durio zibethinus L.)–An exotic tropical fruit. Food Chemistry, 168, 80-89. https://doi.org/10.1016/j.foodchem.2014.07.020

  • Ibraheem, S. A., Ali, A., & Khalina, A. (2011). Development of green insulation boards from kenaf fibres and polyurethane. Polymer-plastics Technology and Engineering, 50(6), 613-621. https://doi.org/10.1080/03602559.2010.551379

  • Jani, S. M., & Izran, K. (2013). Mechanical and physical properties of ureaformaldehyde bonded kenaf core particle boards. Journal of Tropical Agriculture and Food Science, 41(2), 341-347.

  • Jesuarockiam, N., Jawaid, M., Zainudin, E. S., Thariq Hameed Sultan, M., & Yahaya, R. (2019). Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers, 11(7), 1085. https://doi.org/10.3390/polym11071085

  • Khedari, J., Charoenvai, S., & Hirunlabh, J. (2003). New insulating particleboards from durian peel and coconut coir. Building and Environment, 38(3), 435-441. https://doi.org/10.1016/S0360-1323(02)00030-6

  • Khedari, J., Nankongnab, N., Hirunlabh, J., & Teekasap, S. (2004). New low-cost insulation particleboards from mixture of durian peel and coconut coir. Building and Environment, 39(1), 59-65. https://doi.org/10.1016/j.buildenv.2003.08.001

  • Koay, S. C., Subramanian, V., Chan, M. Y., Pang, M. M., Tsai, K. Y., & Cheah, K. H. (2018). Preparation and characterisation of wood plastic composite made up of durian husk fibre and recycled polystyrene foam. MATEC Web of Conferences, 152, 02019. https://doi.org/10.1051/matecconf/201815202019

  • Kusumah, S. S., Umemura, K., Guswenrivo, I., Yoshimura, T., & Kanayama, K. (2017). Utilisation of sweet sorghum bagasse and citric acid for manufacturing of particleboard II: influences of pressing temperature and time on particleboard properties. Journal of Wood Science, 63(2), 161-172.

  • Liu, R., Long, L., Sheng, Y., Xu, J., Qiu, H., Li, X., Wang, Y., & Wu, H. (2019). Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Industrial Crops and Products, 141, 111732. https://doi.org/10.1016/j.indcrop.2019.111732

  • Luamkanchanaphan, T., Chotikaprakhan, S., & Jarusombati, S. (2012). A study of physical, mechanical and thermal properties for thermal insulation from narrow-leaved cattail fibres. APCBEE Procedia, 1, 46-52. https://doi.org/10.1016/j.apcbee.2012.03.009

  • Mandal, S., & Alam, S. (2012). Dynamic mechanical analysis and morphological studies of glass/bamboo fibre reinforced unsaturated polyester resin‐based hybrid composites. Journal of Applied Polymer Science, 125(S1), E382-E387. https://doi.org/10.1002/app.36304

  • Manohar, K. (2012). Experimental investigation of building thermal insulation from agricultural by-products. British Journal of Applied Science & Technology, 2(3), 227-239.

  • Manshor, M. R., Anuar, H., Aimi, M. N., Fitrie, M. A., Nazri, W. W., Sapuan, S. M., El-Shekeil, Y. A., & Wahit, M. U. (2014). Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Materials & Design, 59, 279-286. https://doi.org/10.1016/j.matdes.2014.02.062

  • Manshor, R. M., Anuar, H., Wan Nazri, W. B., & Fitrie, M. I. (2012). Preparation and characterisation of physical properties of durian skin fibres biocomposite. Advanced Materials Research, 576, 212-215. https://doi.org/10.4028/www.scientific.net/AMR.576.212

  • Masrifah, A., Setyaningrum, H., Susilo, A., & Haryadi, I. (2021). Perancangan Sistem Pengelolaan Limbah Durian Layak Kompos Di Agrowisata Kampung Durian Ponorogo. Engagement: Jurnal Pengabdian Kepada Masyarakat, 5(1), 268-282.

  • Mohammed, B. R., Leman, Z., Jawaid, M., Ghazali, M. J., & Ishak, M. R. (2017). Dynamic mechanical analysis of treated and untreated sugar palm fibre-based phenolic composites. BioResources, 12(2), 3448-3462.

  • Mossello, A. A., Harun, J., Shamsi, S. R. F., Resalati, H., Tahir, P. M., Rushdan, I., & Mohmamed, A. Z. (2010). A review of literatures related to kenaf as a alternative for pulpwoods. Agricultural Journal, 5(3), 131-138.

  • Nazri, W., Ezdiani, Z., Romainor, M., Erma, K. S., Jurina, J., & Fadzlina, I. N. (2014). Effect of fibre loading on mechanical properties of durian skin fibre composite. Journal of Tropical Agricultural Food Science, 42(2), 169-174.

  • Norfarhana, A. S., Ilyas, R. A., & Ngadi, N. (2022). A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydrate Polymers, Article 119563. https://doi.org/10.1016/j.carbpol.2022.119563.

  • Nurazzi, N. M., Norli, A., Norrrahim, M. N. F., Rafiqah, S. A., Khalina, A., Sapuan, S. M., & Ilyas, R. A. (2021). Thermal properties of sugar palm yarn reinforced unsaturated polyester composites as an alternative for automotive applications. In S. M., Sapuan., & R. A., Ilyas (Eds.) Biocomposite and synthetic composites for automotive applications (pp. 19-49). Woodhead Publishing.

  • Ostendorf, K., Ahrens, C., Beulshausen, A., Tene Tayo, J. L., & Euring, M. (2021). On the feasibility of a pMDI-reduced production of wood fibre insulation boards by means of kraft lignin and ligneous canola hulls. Polymers, 13(7), 1088. https://doi.org/10.3390/polym13071088

  • Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732-1739. https://doi.org/10.1016/j.enbuild.2011.03.015

  • Payus, C. M., Refdin, M. A., Zahari, N. Z., Rimba, A. B., Geetha, M., Saroj, C., Gasparatos, A., Fukushi, K., & Oliver, P. A. (2021). Durian husk wastes as low-cost adsorbent for physical pollutants removal: Groundwater supply. Materials Today: Proceedings, 42(1), 80-87. https://doi.org/10.1016/j.matpr.2020.10.006

  • Penjumras, P., Rahman, R. A., Talib, R. A., & Abdan, K. (2015). Mechanical properties and water absorption behaviour of durian rind cellulose reinforced poly (lactic acid) biocomposites. International Journal on Advanced Science, Engineering and Information Technology, 5(5), 343-349.

  • Ramlee, N. A., Jawaid, M., Ismail, A. S., Zainudin, E. S., & Yamani, S. A. K. (2021). Evaluation of thermal and acoustic properties of oil palm empty fruit bunch/sugarcane bagasse fibres based hybrid composites for wall buildings thermal insulation. Fibres and Polymers, 22(9), 2563-2571.

  • Razali, N., Sultan, M. T. H., Shah, A. U. M., & Safri, S. N. A. (2021). Low velocity impact characterisation of flax/kenaf/glass fibre reinforced epoxy hybrid composites. In M. Thariq Hameed Sultan, A. U., Md Shah., & N., Saba (Eds.) Impact Studies of Composite Materials (pp. 195-208). Springer.

  • Saad, M. J., & Kamal, I. (2012). Mechanical and physical properties of low density kenaf core particleboards bonded with different resins. Journal of Science and Technology, 4(1), 17-32.

  • Sabaruddin, F. A., Paridah, M. T., Sapuan, S. M., Ilyas, R. A., Lee, S. H., Abdan, K., Mazlan, N., Roseley, A. S. M., & Khalil, H. P. S. (2020). The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers, 13(1), 116. https://doi.org/10.3390/polym13010116.

  • Sahoo, S., Misra, M., & Mohanty, A. K. (2011). Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Composites Part A: Applied Science and Manufacturing, 42(11), 1710-1718. https://doi.org/10.1016/j.compositesa.2011.07.025

  • San Ha, N., Lu, G., Shu, D., & Yu, T. X. (2020). Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). Journal of the Mechanical Behaviour of Biomedical Materials, 104, 103603. https://doi.org/10.1016/j.jmbbm.2019.103603

  • Sargent, R. (2019). Evaluating dimensional stability in solid wood: A review of current practice. Journal of Wood Science, 65(1), 1-11.

  • Shaker, K., Umair, M., Shahid, S., Jabbar, M., Ullah Khan, R. M. W., Zeeshan, M., & Nawab, Y. (2022). Cellulosic fillers extracted from Argyreia speciose waste: a potential reinforcement for composites to enhance properties. Journal of Natural Fibers, 19(11), 4210-4222. https://doi.org/10.1080/15440478.2020.1856271

  • Shaker, K., Khan, R. M. W. U., Jabbar, M., Umair, M., Tariq, A., Kashif, M., & Nawab, Y. (2020). Extraction and characterization of novel fibers from Vernonia elaeagnifolia as a potential textile fiber. Industrial Crops and Products, 152, 112518. https://doi.org/10.1016/j.indcrop.2020.112518

  • Shih, Y. F., Lee, W. C., Jeng, R. J., & Huang, C. M. (2006). Water bamboo husk‐reinforced poly (butylene succinate) biodegradable composites. Journal of Applied Polymer Science, 99(1), 188-199. https://doi.org/10.1002/app.22220

  • Wong, E. D., Zhang, M., Han, G., Kawai, S., & Wang, Q. (2000). Formation of the density profile and its effects on the properties of fibreboard. Journal of Wood Science, 46(3), 202-209.

  • Yousefi, J., Mohamadi, R., Saeedifar, M., Ahmadi, M., & Hosseini-Toudeshky, H. (2016). Delamination characterisation in composite laminates using acoustic emission features, micro visualization and finite element modeling. Journal of Composite Materials, 50(22), 3133-3145. https://doi.org/10.1177/00219983156156

  • Yuan, C., Chen, W., Pham, T. M., & Hao, H. (2019). Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete. Composites Part B: Engineering, 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089

  • Zakaria, A. A. (2020). Managing Durian Orchards in Malaysia. Universiti Putra Malaysia Press.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST(S)-0587-2023

Download Full Article PDF

Share this article

Recent Articles