e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Aji, I. S., Zainudin, E. S., Khalina, A., Sapuan, S. M., & Khairul, M. D. (2011). Studying the effect of fiber size and fiber loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. Journal of Reinforced Plastics and Composites, 30(6), 546–553. https://doi.org/10.1177/0731684411399141
Alaaeddin, M. H., Sapuan, S. M., Zuhri, M. Y. M., Zainudin, E. S., & Al- Oqla, F. M. (2019). Physical and mechanical properties of polyvinylidene fluoride - Short sugar palm fiber nanocomposites. Journal of Cleaner Production, 235, 473–482. https://doi.org/10.1016/j.jclepro.2019.06.341
Alamri, H., & Low, I. M. (2012). Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites. Polymer Composites, 33(4), 589–600. https://doi.org/10.1002/pc.22163
Alaseel, B. H., Nainar, M. A. M., Nordin, N. A., Yahya, Z., & Rahim, M. N. A. (2022). Effect of water absorption on flexural properties of Kenaf/Glass fibres reinforced unsaturated polyester hybrid composites rod. Pertanika Journal of Science and Technology, 30(1), 397–412. https://doi.org/10.47836/pjst.30.1.22
Ali, I. M., Hussain, T. H., & Naje, A. S. (2021). Surface treatment of cement based composites: Nano coating technique. Pertanika Journal of Science & Technology, 29(1), 349-362. https://doi.org/10.47836/pjst.29.1.20
ASTM D635-18. (2018). Standard test method for rate ofburning and/or extent and time of burning of plastics in a horizontal position. ASTM International. https://www.astm.org/d0635-18.html
ASTM D2863-09. (2010). Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-like Combustion of Plastics (Oxygen Index). ASTM International. https://www.astm.org/d2863-09.html
Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., & Alothman, O. Y. (2018). Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Composite Structures, 202, 954–958. https://doi.org/10.1016/j.compstruct.2018.05.009
Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., Ansari, M. N. M., & Ilyas, R. A. (2019). Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 3726–3732. https://doi.org/10.1016/j.jmrt.2019.06.032
Aworinde, A. K., Emagbetere, E., Adeosun, S. O., & Akinlabi, E. T. (2021). Polylactide and its Composites on Various Scales of Hardness. Pertanika Journal of Science and Technology, 29(2), 1213-1322. https://doi.org/10.47836/pjst.29.2.34
Bachtiar, D., Sapuan, S. M., & Hamdan, M. M. (2009). The influence of alkaline surface fibre treatment on the impact properties of sugar palm fibre-reinforced epoxy composites. Polymer-Plastics Technology and Engineering, 48(4), 379–383. https://doi.org/10.1080/03602550902725373
Bharath, K. N., & Basavarajappa, S. (2014). Flammability characteristics of chemical treated woven natural fabric reinforced phenol formaldehyde composites. Procedia Materials Science, 5, 1880–1886. https://doi.org/10.1016/j.mspro.2014.07.507
Chee, S. S., Jawaid, M., Alothman, O. Y., & Yahaya, R. (2020). Thermo-oxidative stability and flammability properties of bamboo/kenaf/nanoclay/epoxy hybrid nanocomposites. RSC Advances, 10(37), 21686–21697. https://doi.org/10.1039/D0RA02126A
Das, G., & Biswas, S. (2016). Effect of fiber parameters on physical, mechanical and water absorption behaviour of coir fiber-epoxy composites. Journal of Reinforced Plastics and Composites, 35(8), 628–637. https://doi.org/10.1177/0731684415626594
de Vasconcellos, D. S., Touchard, F., & Chocinski-Arnault, L. (2014). Tension–tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: A multi-instrumented damage analysis. International Journal of Fatigue, 59, 159–169. https://doi.org/10.1016/j.ijfatigue.2013.08.029
Deo, C., & Acharya, S. K. (2010). Effect of moisture absorption on mechanical properties of chopped natural fiber reinforced epoxy composite. Journal of Reinforced Plastics and Composites, 29(16), 2513–2521. https://doi.org/10.1177/0731684409353352
Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. International Journal of Biological Macromolecules, 101, 75–83. https://doi.org/10.1016/j.ijbiomac.2017.03.045
Fu, S., Song, P., & Liu, X. (2017). Thermal and flame retardancy properties of thermoplastics/natural fiber biocomposites. In F. Mizi & F. Feng (Eds.) Advanced high strength natural fibre composites in construction (pp. 479–508). Elsevier. https://doi.org/10.1016/B978-0-08-100411-1.00019-4
Gupta, A. K., Biswal, M., Mohanty, S., & Nayak, S. K. (2012). Mechanical, thermal degradation, and flammability studies on surface modified sisal fiber reinforced recycled polypropylene composites. Advances in Mechanical Engineering, 4, 418031. https://doi.org/10.1155/2012/418031
Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1–25. https://doi.org/10.1016/j.compositesa.2015.06.007
Hatanaka, L. C., Ahmed, L., Sachdeva, S., Wang, Q., Cheng, Z., & Mannan, M. S. (2016). Thermal degradation and flammability of nanocomposites composed of silica cross-linked to poly(methyl methacrylate). Plastics, Rubber and Composites, 45(9), 375–381. https://doi.org/10.1080/14658011.2016.1204773
Hisham, S., Faieza, A. A., Ismail, N., Sapuan, S. M., & Ibrahim, M. S. (2011). Flexural mechanical characteristic of sawdust and chipwood filled epoxy composites. Key Engineering Materials, 471–472, 1064–1069. https://doi.org/10.4028/www.scientific.net/KEM.471-472.1064
Ibrahim, M. S., Sapuan, S. M., & Faieza, A. A. (2012). Mechanical and thermal properties of composites from unsaturated polyester filled with oil palm ash. Journal of Mechanical Engineering and Sciences, 2, 133-147. https://doi.org/10.15282/jmes.2.2012.1.0012
Ilyas, R. A., Sapuan, S. M., Atikah, M. S. N., Ibrahim, R., Hazrol, M. D., Sherwani, S. F. K., Jamal, T., Nazrin, A., & Syafiq, R. (2020, November 16). Natural fibre: A promising source for the production of nanocellulose. [Paper presentation]. 7th Postgraduate Seminar on Natural Fibre reinforced Polymer Composites, Selangor, Malaysia.
Ilyas, R. A., Sapuan, S. M., & Ishak, M. R. (2018). Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers, 181(June 2017), 1038–1051. https://doi.org/10.1016/j.carbpol.2017.11.045
ISO 5660-1. (2002). Reaction‐to‐fire tests‐Heat release, smoke production and mass loss rate‐Part 1: heat release rate (cone calorimeter method). International Organization for Standardization Geneva. https://www.iso.org/standard/35351.html
Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), 1–18. https://doi.org/10.1016/j.carbpol.2011.04.043
Karunakaran, S., Majid, D. L., & Tawil, M. L. M. (2016). Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure. IOP Conference Series: Materials Science and Engineering, 152(1), 012068. https://doi.org/10.1088/1757-899X/152/1/012068
Khan, Z. I., Mohamad, Z., Rahmat, A. R., & Habib, U. (2021). Synthesis and characterization of composite materials with enhanced thermo-mechanical properties for unmanned aerial vehicles (Uavs) and aerospace technologies. Pertanika Journal of Science & Technology, 29(3), 2003-2015. https://doi.org/10.47836/pjst.29.3.15
Kozłowski, R., & Władyka-Przybylak, M. (2008). Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Technologies, 19(6), 446–453. https://doi.org/10.1002/pat.1135
Liu, Z., Erhan, S. Z., Akin, D. E., & Barton, F. E. (2006). “Green” composites from renewable resources: Preparation of epoxidized soybean oil and flax fiber composites. Journal of Agricultural and Food Chemistry, 54(6), 2134–2137. https://doi.org/10.1021/jf0526745
Low, I. M., McGrath, M., Lawrence, D., Schmidt, P., Lane, J., Latella, B. A., & Sim, K. S. (2007). Mechanical and fracture properties of cellulose-fibre-reinforced epoxy laminates. Composites Part A: Applied Science and Manufacturing, 38(3), 963–974. https://doi.org/10.1016/j.compositesa.2006.06.019
Mahjoub, R., Yatim, J. M., Mohd Sam, A. R., & Hashemi, S. H. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 55, 103-113. https://doi.org/10.1016/j.conbuildmat.2014.01.036
Minh, N. P., Nhi, T. T. Y., Nguyen, T. N., Bich, S. N., & True, D. T. T. (2019). Some factors influencing the properties of dried watermelon powder during spray drying. Journal of Pharmaceutical Sciences and Research, 11(4), 1416–1421.
Mishra, V., & Biswas, S. (2013). Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Engineering, 51, 561–566. https://doi.org/10.1016/j.proeng.2013.01.079
Mogea, J., Seibert, B., & Smits, W. (1991). Multipurpose palms: the sugar palm (Arenga pinnata (Wurmb) Merr.). Agroforestry Systems, 13(2), 111–129. https://doi.org/10.1007/BF00140236
Mohammed, A. A. B. A., Hasan, Z., Omran, A. A. B., Elfaghi, A. M., Khattak, M. A., Ilyas, R. A., & Sapuan, S. M. (2023). Effect of various plasticizers in different concentrations on physical, thermal, mechanical, and structural properties of wheat starch-based films. Polymers, 15(1), 63. https://doi.org/10.3390/ polym15010063
Nasir, N. A. F. M., Jamaluddin, J., Zainudin, Z., Busheri, M. M., Adrus, N., Azim, F. S. S., & Hasham, R. (2020). The effect of alkaline treatment onto physical, thermal, mechanical and chemical properties of lemba leaves fibres as new resources of biomass. Pertanika Journal of Science and Technology, 28(4). https://doi.org/10.47836/pjst.28.4.21
Prabhakar, M. N., Shah, A. U. R., & Song, J. I. (2015). A Review on the flammability and flame retardant properties of natural fibers and polymer matrix based composites. Composites Research, 28(2), 29–39. https://doi.org/10.7234/composres.2015.28.2.029
Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172, 566-581. https://doi.org/10.1016/j.jclepro.2017.10.101
Scida, D., Assarar, M., Poilâne, C., & Ayad, R. (2013). Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Composites Part B: Engineering, 48, 51–58. https://doi.org/10.1016/j.compositesb.2012.12.010
Sharba, M. J., Leman, Z., Sultan, M. T. H., Ishak, M. R., & Hanim, M. A. A. (2016). Tensile and compressive properties of woven kenaf/glass sandwich hybrid composites. International Journal of Polymer Science, 2016, 1235048. https://doi.org/10.1155/2016/1235048
Shih, Y. F. (2007). Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Materials Science and Engineering: A, 445–446, 289–295. https://doi.org/10.1016/j.msea.2006.09.032
Song, L., Wang, D., Liu, X., Yin, A., & Long, Z. (2023). Prediction of mechanical properties of composite materials using multimodal fusion learning. Sensors and Actuators A: Physical, 358, 114433. https://doi.org/10.1016/j.sna.2023.114433
Suriani, M. J., Radzi, F. S. M., Ilyas, R. A., Petrů, M., Sapuan, S. M., & Ruzaidi, C. M. (2021). Flammability, tensile, and morphological properties of oil palm empty fruit bunches fiber/pet yarn-reinforced epoxy fire retardant hybrid polymer composites. Polymers, 13(8), 1282. https://doi.org/10.3390/polym13081282
Tarique, J., Sapuan, S. M., Khalina, A., Sherwani, S. F. K., Yusuf, J., & Ilyas, R. A. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology, 13, 1191–1219. https://doi.org/10.1016/j.jmrt.2021.05.047
Tarique, J, Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 13900. https://doi.org/10.1038/s41598-021-93094-y
Tarique, J, Sapuan, S. M., Khalina, A., Ilyas, R. A., & Zainudin, E. S. (2022). Thermal, flammability, and antimicrobial properties of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites for food packaging applications. International Journal of Biological Macromolecules, 213(January), 1–10. https://doi.org/10.1016/j.ijbiomac.2022.05.104
Tarique, J., Sapuan, S. M., & Khalina, A. (2022). Extraction and characterization of a novel natural lignocellulosic (Bagasse and Husk) fibers from arrowroot (Maranta Arundinacea). Journal of Natural Fibers, 19(15), 9914–9930. https://doi.org/10.1080/15440478.2021.1993418
Venkateshwaran, N., Elayaperumal, A., & Jagatheeshwaran, M. S. (2011). Effect of fiber length and fiber content on mechanical properties of banana fiber/epoxy composite. Journal of Reinforced Plastics and Composites, 30(19), 1621–1627. https://doi.org/10.1177/0731684411426810
Vijay, R., & Singaravelu, D. L. (2016). Experimental investigation on the mechanical properties of Cyperus pangorei fibers and jute fiber-based natural fiber composites. International Journal of Polymer Analysis and Characterization, 21(7), 617–627. https://doi.org/10.1080/1023666X.2016.1192354
Xiao, F., Bedane, A. H., Zhao, J. X., Mann, M. D., & Pignatello, J. J. (2018). Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar). Science of The Total Environment, 618, 276–283. https://doi.org/10.1016/j.scitotenv.2017.11.008
Yousif, B. F., Shalwan, A., Chin, C. W., & Ming, K. C. (2012). Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design, 40, 378–385. https://doi.org/10.1016/j.matdes.2012.04.017
ISSN 1511-3701
e-ISSN 2231-8542