PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 31 (S1) 2023 / JST(S)-0608-2023

 

Flammability and Soil Burial Performance of Sugar Palm (Arenga pinnata (wurmb) merr) Fiber Reinforced Epoxy Composites

Tarique Jamal and Salit Mohd Sapuan

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023

DOI: https://doi.org/10.47836/pjst.31.S1.06

Keywords: Biocomposites, cone calorimetry, flammability, soil burial, sugar palm fibre

Published on: 27 October 2023

This study investigates the effects of soil burial and flammability on sugar palm fibre (SPF) (Arenga pinnata (wurmb) merr)-reinforced epoxy composites. In order to determine the flammability and biodegradability properties, experiments are conducted in accordance with ASTM standards. The hand lay-up method was used to fabricate composite samples with two different weight ratios between epoxy and SPF, which were 70:30 and 50:50. Biodegradability and flammability properties were investigated using horizontal burning tests, limiting oxygen index (LOI), cone calorimetry, and soil burial. It was found that the Epoxy/SPF-50 was the composite that exhibited the fastest degradability at 0.81%/week. The result of the horizontal burning test showed that the addition of SPF reduced the burning rate but slightly increased it at 50 wt% because the ratio between epoxy and SPF exceeds the optimum fibre loading. The Epoxy/SPF-50 exhibited a better LOI value at 23.3 than pure epoxy (control), which was 19.8. From the cone calorimetry test, it was observed that the time to ignition (TTI) and total heat release (THR) values were decreased when the amount of SPF increased. Char production increases the flame-retardant protection of SPF-reinforced epoxy composites. To the best of the authors’ knowledge, no published study has been conducted on the flammability and biodegradability characteristics of SPF-reinforced epoxy composites.

  • Aji, I. S., Zainudin, E. S., Khalina, A., Sapuan, S. M., & Khairul, M. D. (2011). Studying the effect of fiber size and fiber loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. Journal of Reinforced Plastics and Composites, 30(6), 546–553. https://doi.org/10.1177/0731684411399141

  • Alaaeddin, M. H., Sapuan, S. M., Zuhri, M. Y. M., Zainudin, E. S., & Al- Oqla, F. M. (2019). Physical and mechanical properties of polyvinylidene fluoride - Short sugar palm fiber nanocomposites. Journal of Cleaner Production, 235, 473–482. https://doi.org/10.1016/j.jclepro.2019.06.341

  • Alamri, H., & Low, I. M. (2012). Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites. Polymer Composites, 33(4), 589–600. https://doi.org/10.1002/pc.22163

  • Alaseel, B. H., Nainar, M. A. M., Nordin, N. A., Yahya, Z., & Rahim, M. N. A. (2022). Effect of water absorption on flexural properties of Kenaf/Glass fibres reinforced unsaturated polyester hybrid composites rod. Pertanika Journal of Science and Technology, 30(1), 397–412. https://doi.org/10.47836/pjst.30.1.22

  • Ali, I. M., Hussain, T. H., & Naje, A. S. (2021). Surface treatment of cement based composites: Nano coating technique. Pertanika Journal of Science & Technology, 29(1), 349-362. https://doi.org/10.47836/pjst.29.1.20

  • ASTM D635-18. (2018). Standard test method for rate ofburning and/or extent and time of burning of plastics in a horizontal position. ASTM International. https://www.astm.org/d0635-18.html

  • ASTM D2863-09. (2010). Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-like Combustion of Plastics (Oxygen Index). ASTM International. https://www.astm.org/d2863-09.html

  • Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., & Alothman, O. Y. (2018). Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Composite Structures, 202, 954–958. https://doi.org/10.1016/j.compstruct.2018.05.009

  • Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., Ansari, M. N. M., & Ilyas, R. A. (2019). Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 3726–3732. https://doi.org/10.1016/j.jmrt.2019.06.032

  • Aworinde, A. K., Emagbetere, E., Adeosun, S. O., & Akinlabi, E. T. (2021). Polylactide and its Composites on Various Scales of Hardness. Pertanika Journal of Science and Technology, 29(2), 1213-1322. https://doi.org/10.47836/pjst.29.2.34

  • Bachtiar, D., Sapuan, S. M., & Hamdan, M. M. (2009). The influence of alkaline surface fibre treatment on the impact properties of sugar palm fibre-reinforced epoxy composites. Polymer-Plastics Technology and Engineering, 48(4), 379–383. https://doi.org/10.1080/03602550902725373

  • Bharath, K. N., & Basavarajappa, S. (2014). Flammability characteristics of chemical treated woven natural fabric reinforced phenol formaldehyde composites. Procedia Materials Science, 5, 1880–1886. https://doi.org/10.1016/j.mspro.2014.07.507

  • Chee, S. S., Jawaid, M., Alothman, O. Y., & Yahaya, R. (2020). Thermo-oxidative stability and flammability properties of bamboo/kenaf/nanoclay/epoxy hybrid nanocomposites. RSC Advances, 10(37), 21686–21697. https://doi.org/10.1039/D0RA02126A

  • Das, G., & Biswas, S. (2016). Effect of fiber parameters on physical, mechanical and water absorption behaviour of coir fiber-epoxy composites. Journal of Reinforced Plastics and Composites, 35(8), 628–637. https://doi.org/10.1177/0731684415626594

  • de Vasconcellos, D. S., Touchard, F., & Chocinski-Arnault, L. (2014). Tension–tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: A multi-instrumented damage analysis. International Journal of Fatigue, 59, 159–169. https://doi.org/10.1016/j.ijfatigue.2013.08.029

  • Deo, C., & Acharya, S. K. (2010). Effect of moisture absorption on mechanical properties of chopped natural fiber reinforced epoxy composite. Journal of Reinforced Plastics and Composites, 29(16), 2513–2521. https://doi.org/10.1177/0731684409353352

  • Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. International Journal of Biological Macromolecules, 101, 75–83. https://doi.org/10.1016/j.ijbiomac.2017.03.045

  • Fu, S., Song, P., & Liu, X. (2017). Thermal and flame retardancy properties of thermoplastics/natural fiber biocomposites. In F. Mizi & F. Feng (Eds.) Advanced high strength natural fibre composites in construction (pp. 479–508). Elsevier. https://doi.org/10.1016/B978-0-08-100411-1.00019-4

  • Gupta, A. K., Biswal, M., Mohanty, S., & Nayak, S. K. (2012). Mechanical, thermal degradation, and flammability studies on surface modified sisal fiber reinforced recycled polypropylene composites. Advances in Mechanical Engineering, 4, 418031. https://doi.org/10.1155/2012/418031

  • Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

  • Hatanaka, L. C., Ahmed, L., Sachdeva, S., Wang, Q., Cheng, Z., & Mannan, M. S. (2016). Thermal degradation and flammability of nanocomposites composed of silica cross-linked to poly(methyl methacrylate). Plastics, Rubber and Composites, 45(9), 375–381. https://doi.org/10.1080/14658011.2016.1204773

  • Hisham, S., Faieza, A. A., Ismail, N., Sapuan, S. M., & Ibrahim, M. S. (2011). Flexural mechanical characteristic of sawdust and chipwood filled epoxy composites. Key Engineering Materials, 471–472, 1064–1069. https://doi.org/10.4028/www.scientific.net/KEM.471-472.1064

  • Ibrahim, M. S., Sapuan, S. M., & Faieza, A. A. (2012). Mechanical and thermal properties of composites from unsaturated polyester filled with oil palm ash. Journal of Mechanical Engineering and Sciences, 2, 133-147. https://doi.org/10.15282/jmes.2.2012.1.0012

  • Ilyas, R. A., Sapuan, S. M., Atikah, M. S. N., Ibrahim, R., Hazrol, M. D., Sherwani, S. F. K., Jamal, T., Nazrin, A., & Syafiq, R. (2020, November 16). Natural fibre: A promising source for the production of nanocellulose. [Paper presentation]. 7th Postgraduate Seminar on Natural Fibre reinforced Polymer Composites, Selangor, Malaysia.

  • Ilyas, R. A., Sapuan, S. M., & Ishak, M. R. (2018). Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers, 181(June 2017), 1038–1051. https://doi.org/10.1016/j.carbpol.2017.11.045

  • ISO 5660-1. (2002). Reaction‐to‐fire tests‐Heat release, smoke production and mass loss rate‐Part 1: heat release rate (cone calorimeter method). International Organization for Standardization Geneva. https://www.iso.org/standard/35351.html

  • Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), 1–18. https://doi.org/10.1016/j.carbpol.2011.04.043

  • Karunakaran, S., Majid, D. L., & Tawil, M. L. M. (2016). Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure. IOP Conference Series: Materials Science and Engineering, 152(1), 012068. https://doi.org/10.1088/1757-899X/152/1/012068

  • Khan, Z. I., Mohamad, Z., Rahmat, A. R., & Habib, U. (2021). Synthesis and characterization of composite materials with enhanced thermo-mechanical properties for unmanned aerial vehicles (Uavs) and aerospace technologies. Pertanika Journal of Science & Technology, 29(3), 2003-2015. https://doi.org/10.47836/pjst.29.3.15

  • Kozłowski, R., & Władyka-Przybylak, M. (2008). Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Technologies, 19(6), 446–453. https://doi.org/10.1002/pat.1135

  • Liu, Z., Erhan, S. Z., Akin, D. E., & Barton, F. E. (2006). “Green” composites from renewable resources: Preparation of epoxidized soybean oil and flax fiber composites. Journal of Agricultural and Food Chemistry, 54(6), 2134–2137. https://doi.org/10.1021/jf0526745

  • Low, I. M., McGrath, M., Lawrence, D., Schmidt, P., Lane, J., Latella, B. A., & Sim, K. S. (2007). Mechanical and fracture properties of cellulose-fibre-reinforced epoxy laminates. Composites Part A: Applied Science and Manufacturing, 38(3), 963–974. https://doi.org/10.1016/j.compositesa.2006.06.019

  • Mahjoub, R., Yatim, J. M., Mohd Sam, A. R., & Hashemi, S. H. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 55, 103-113. https://doi.org/10.1016/j.conbuildmat.2014.01.036

  • Minh, N. P., Nhi, T. T. Y., Nguyen, T. N., Bich, S. N., & True, D. T. T. (2019). Some factors influencing the properties of dried watermelon powder during spray drying. Journal of Pharmaceutical Sciences and Research, 11(4), 1416–1421.

  • Mishra, V., & Biswas, S. (2013). Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Engineering, 51, 561–566. https://doi.org/10.1016/j.proeng.2013.01.079

  • Mogea, J., Seibert, B., & Smits, W. (1991). Multipurpose palms: the sugar palm (Arenga pinnata (Wurmb) Merr.). Agroforestry Systems, 13(2), 111–129. https://doi.org/10.1007/BF00140236

  • Mohammed, A. A. B. A., Hasan, Z., Omran, A. A. B., Elfaghi, A. M., Khattak, M. A., Ilyas, R. A., & Sapuan, S. M. (2023). Effect of various plasticizers in different concentrations on physical, thermal, mechanical, and structural properties of wheat starch-based films. Polymers, 15(1), 63. https://doi.org/10.3390/ polym15010063

  • Nasir, N. A. F. M., Jamaluddin, J., Zainudin, Z., Busheri, M. M., Adrus, N., Azim, F. S. S., & Hasham, R. (2020). The effect of alkaline treatment onto physical, thermal, mechanical and chemical properties of lemba leaves fibres as new resources of biomass. Pertanika Journal of Science and Technology, 28(4). https://doi.org/10.47836/pjst.28.4.21

  • Prabhakar, M. N., Shah, A. U. R., & Song, J. I. (2015). A Review on the flammability and flame retardant properties of natural fibers and polymer matrix based composites. Composites Research, 28(2), 29–39. https://doi.org/10.7234/composres.2015.28.2.029

  • Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172, 566-581. https://doi.org/10.1016/j.jclepro.2017.10.101

  • Scida, D., Assarar, M., Poilâne, C., & Ayad, R. (2013). Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Composites Part B: Engineering, 48, 51–58. https://doi.org/10.1016/j.compositesb.2012.12.010

  • Sharba, M. J., Leman, Z., Sultan, M. T. H., Ishak, M. R., & Hanim, M. A. A. (2016). Tensile and compressive properties of woven kenaf/glass sandwich hybrid composites. International Journal of Polymer Science, 2016, 1235048. https://doi.org/10.1155/2016/1235048

  • Shih, Y. F. (2007). Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Materials Science and Engineering: A, 445–446, 289–295. https://doi.org/10.1016/j.msea.2006.09.032

  • Song, L., Wang, D., Liu, X., Yin, A., & Long, Z. (2023). Prediction of mechanical properties of composite materials using multimodal fusion learning. Sensors and Actuators A: Physical, 358, 114433. https://doi.org/10.1016/j.sna.2023.114433

  • Suriani, M. J., Radzi, F. S. M., Ilyas, R. A., Petrů, M., Sapuan, S. M., & Ruzaidi, C. M. (2021). Flammability, tensile, and morphological properties of oil palm empty fruit bunches fiber/pet yarn-reinforced epoxy fire retardant hybrid polymer composites. Polymers, 13(8), 1282. https://doi.org/10.3390/polym13081282

  • Tarique, J., Sapuan, S. M., Khalina, A., Sherwani, S. F. K., Yusuf, J., & Ilyas, R. A. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology, 13, 1191–1219. https://doi.org/10.1016/j.jmrt.2021.05.047

  • Tarique, J, Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 13900. https://doi.org/10.1038/s41598-021-93094-y

  • Tarique, J, Sapuan, S. M., Khalina, A., Ilyas, R. A., & Zainudin, E. S. (2022). Thermal, flammability, and antimicrobial properties of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites for food packaging applications. International Journal of Biological Macromolecules, 213(January), 1–10. https://doi.org/10.1016/j.ijbiomac.2022.05.104

  • Tarique, J., Sapuan, S. M., & Khalina, A. (2022). Extraction and characterization of a novel natural lignocellulosic (Bagasse and Husk) fibers from arrowroot (Maranta Arundinacea). Journal of Natural Fibers, 19(15), 9914–9930. https://doi.org/10.1080/15440478.2021.1993418

  • Venkateshwaran, N., Elayaperumal, A., & Jagatheeshwaran, M. S. (2011). Effect of fiber length and fiber content on mechanical properties of banana fiber/epoxy composite. Journal of Reinforced Plastics and Composites, 30(19), 1621–1627. https://doi.org/10.1177/0731684411426810

  • Vijay, R., & Singaravelu, D. L. (2016). Experimental investigation on the mechanical properties of Cyperus pangorei fibers and jute fiber-based natural fiber composites. International Journal of Polymer Analysis and Characterization, 21(7), 617–627. https://doi.org/10.1080/1023666X.2016.1192354

  • Xiao, F., Bedane, A. H., Zhao, J. X., Mann, M. D., & Pignatello, J. J. (2018). Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar). Science of The Total Environment, 618, 276–283. https://doi.org/10.1016/j.scitotenv.2017.11.008

  • Yousif, B. F., Shalwan, A., Chin, C. W., & Ming, K. C. (2012). Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design, 40, 378–385. https://doi.org/10.1016/j.matdes.2012.04.017

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST(S)-0608-2023

Download Full Article PDF

Share this article

Recent Articles