e-ISSN 2231-8542
ISSN 1511-3701
Tarique Jamal and Salit Mohd Sapuan
Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023
DOI: https://doi.org/10.47836/pjst.31.S1.06
Keywords: Biocomposites, cone calorimetry, flammability, soil burial, sugar palm fibre
Published on: 27 October 2023
This study investigates the effects of soil burial and flammability on sugar palm fibre (SPF) (Arenga pinnata (wurmb) merr)-reinforced epoxy composites. In order to determine the flammability and biodegradability properties, experiments are conducted in accordance with ASTM standards. The hand lay-up method was used to fabricate composite samples with two different weight ratios between epoxy and SPF, which were 70:30 and 50:50. Biodegradability and flammability properties were investigated using horizontal burning tests, limiting oxygen index (LOI), cone calorimetry, and soil burial. It was found that the Epoxy/SPF-50 was the composite that exhibited the fastest degradability at 0.81%/week. The result of the horizontal burning test showed that the addition of SPF reduced the burning rate but slightly increased it at 50 wt% because the ratio between epoxy and SPF exceeds the optimum fibre loading. The Epoxy/SPF-50 exhibited a better LOI value at 23.3 than pure epoxy (control), which was 19.8. From the cone calorimetry test, it was observed that the time to ignition (TTI) and total heat release (THR) values were decreased when the amount of SPF increased. Char production increases the flame-retardant protection of SPF-reinforced epoxy composites. To the best of the authors’ knowledge, no published study has been conducted on the flammability and biodegradability characteristics of SPF-reinforced epoxy composites.
Aji, I. S., Zainudin, E. S., Khalina, A., Sapuan, S. M., & Khairul, M. D. (2011). Studying the effect of fiber size and fiber loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. Journal of Reinforced Plastics and Composites, 30(6), 546–553. https://doi.org/10.1177/0731684411399141
Alaaeddin, M. H., Sapuan, S. M., Zuhri, M. Y. M., Zainudin, E. S., & Al- Oqla, F. M. (2019). Physical and mechanical properties of polyvinylidene fluoride - Short sugar palm fiber nanocomposites. Journal of Cleaner Production, 235, 473–482. https://doi.org/10.1016/j.jclepro.2019.06.341
Alamri, H., & Low, I. M. (2012). Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites. Polymer Composites, 33(4), 589–600. https://doi.org/10.1002/pc.22163
Alaseel, B. H., Nainar, M. A. M., Nordin, N. A., Yahya, Z., & Rahim, M. N. A. (2022). Effect of water absorption on flexural properties of Kenaf/Glass fibres reinforced unsaturated polyester hybrid composites rod. Pertanika Journal of Science and Technology, 30(1), 397–412. https://doi.org/10.47836/pjst.30.1.22
Ali, I. M., Hussain, T. H., & Naje, A. S. (2021). Surface treatment of cement based composites: Nano coating technique. Pertanika Journal of Science & Technology, 29(1), 349-362. https://doi.org/10.47836/pjst.29.1.20
ASTM D635-18. (2018). Standard test method for rate ofburning and/or extent and time of burning of plastics in a horizontal position. ASTM International. https://www.astm.org/d0635-18.html
ASTM D2863-09. (2010). Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-like Combustion of Plastics (Oxygen Index). ASTM International. https://www.astm.org/d2863-09.html
Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., & Alothman, O. Y. (2018). Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Composite Structures, 202, 954–958. https://doi.org/10.1016/j.compstruct.2018.05.009
Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., Ansari, M. N. M., & Ilyas, R. A. (2019). Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 3726–3732. https://doi.org/10.1016/j.jmrt.2019.06.032
Aworinde, A. K., Emagbetere, E., Adeosun, S. O., & Akinlabi, E. T. (2021). Polylactide and its Composites on Various Scales of Hardness. Pertanika Journal of Science and Technology, 29(2), 1213-1322. https://doi.org/10.47836/pjst.29.2.34
Bachtiar, D., Sapuan, S. M., & Hamdan, M. M. (2009). The influence of alkaline surface fibre treatment on the impact properties of sugar palm fibre-reinforced epoxy composites. Polymer-Plastics Technology and Engineering, 48(4), 379–383. https://doi.org/10.1080/03602550902725373
Bharath, K. N., & Basavarajappa, S. (2014). Flammability characteristics of chemical treated woven natural fabric reinforced phenol formaldehyde composites. Procedia Materials Science, 5, 1880–1886. https://doi.org/10.1016/j.mspro.2014.07.507
Chee, S. S., Jawaid, M., Alothman, O. Y., & Yahaya, R. (2020). Thermo-oxidative stability and flammability properties of bamboo/kenaf/nanoclay/epoxy hybrid nanocomposites. RSC Advances, 10(37), 21686–21697. https://doi.org/10.1039/D0RA02126A
Das, G., & Biswas, S. (2016). Effect of fiber parameters on physical, mechanical and water absorption behaviour of coir fiber-epoxy composites. Journal of Reinforced Plastics and Composites, 35(8), 628–637. https://doi.org/10.1177/0731684415626594
de Vasconcellos, D. S., Touchard, F., & Chocinski-Arnault, L. (2014). Tension–tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: A multi-instrumented damage analysis. International Journal of Fatigue, 59, 159–169. https://doi.org/10.1016/j.ijfatigue.2013.08.029
Deo, C., & Acharya, S. K. (2010). Effect of moisture absorption on mechanical properties of chopped natural fiber reinforced epoxy composite. Journal of Reinforced Plastics and Composites, 29(16), 2513–2521. https://doi.org/10.1177/0731684409353352
Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. International Journal of Biological Macromolecules, 101, 75–83. https://doi.org/10.1016/j.ijbiomac.2017.03.045
Fu, S., Song, P., & Liu, X. (2017). Thermal and flame retardancy properties of thermoplastics/natural fiber biocomposites. In F. Mizi & F. Feng (Eds.) Advanced high strength natural fibre composites in construction (pp. 479–508). Elsevier. https://doi.org/10.1016/B978-0-08-100411-1.00019-4
Gupta, A. K., Biswal, M., Mohanty, S., & Nayak, S. K. (2012). Mechanical, thermal degradation, and flammability studies on surface modified sisal fiber reinforced recycled polypropylene composites. Advances in Mechanical Engineering, 4, 418031. https://doi.org/10.1155/2012/418031
Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1–25. https://doi.org/10.1016/j.compositesa.2015.06.007
Hatanaka, L. C., Ahmed, L., Sachdeva, S., Wang, Q., Cheng, Z., & Mannan, M. S. (2016). Thermal degradation and flammability of nanocomposites composed of silica cross-linked to poly(methyl methacrylate). Plastics, Rubber and Composites, 45(9), 375–381. https://doi.org/10.1080/14658011.2016.1204773
Hisham, S., Faieza, A. A., Ismail, N., Sapuan, S. M., & Ibrahim, M. S. (2011). Flexural mechanical characteristic of sawdust and chipwood filled epoxy composites. Key Engineering Materials, 471–472, 1064–1069. https://doi.org/10.4028/www.scientific.net/KEM.471-472.1064
Ibrahim, M. S., Sapuan, S. M., & Faieza, A. A. (2012). Mechanical and thermal properties of composites from unsaturated polyester filled with oil palm ash. Journal of Mechanical Engineering and Sciences, 2, 133-147. https://doi.org/10.15282/jmes.2.2012.1.0012
Ilyas, R. A., Sapuan, S. M., Atikah, M. S. N., Ibrahim, R., Hazrol, M. D., Sherwani, S. F. K., Jamal, T., Nazrin, A., & Syafiq, R. (2020, November 16). Natural fibre: A promising source for the production of nanocellulose. [Paper presentation]. 7th Postgraduate Seminar on Natural Fibre reinforced Polymer Composites, Selangor, Malaysia.
Ilyas, R. A., Sapuan, S. M., & Ishak, M. R. (2018). Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers, 181(June 2017), 1038–1051. https://doi.org/10.1016/j.carbpol.2017.11.045
ISO 5660-1. (2002). Reaction‐to‐fire tests‐Heat release, smoke production and mass loss rate‐Part 1: heat release rate (cone calorimeter method). International Organization for Standardization Geneva. https://www.iso.org/standard/35351.html
Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), 1–18. https://doi.org/10.1016/j.carbpol.2011.04.043
Karunakaran, S., Majid, D. L., & Tawil, M. L. M. (2016). Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure. IOP Conference Series: Materials Science and Engineering, 152(1), 012068. https://doi.org/10.1088/1757-899X/152/1/012068
Khan, Z. I., Mohamad, Z., Rahmat, A. R., & Habib, U. (2021). Synthesis and characterization of composite materials with enhanced thermo-mechanical properties for unmanned aerial vehicles (Uavs) and aerospace technologies. Pertanika Journal of Science & Technology, 29(3), 2003-2015. https://doi.org/10.47836/pjst.29.3.15
Kozłowski, R., & Władyka-Przybylak, M. (2008). Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Technologies, 19(6), 446–453. https://doi.org/10.1002/pat.1135
Liu, Z., Erhan, S. Z., Akin, D. E., & Barton, F. E. (2006). “Green” composites from renewable resources: Preparation of epoxidized soybean oil and flax fiber composites. Journal of Agricultural and Food Chemistry, 54(6), 2134–2137. https://doi.org/10.1021/jf0526745
Low, I. M., McGrath, M., Lawrence, D., Schmidt, P., Lane, J., Latella, B. A., & Sim, K. S. (2007). Mechanical and fracture properties of cellulose-fibre-reinforced epoxy laminates. Composites Part A: Applied Science and Manufacturing, 38(3), 963–974. https://doi.org/10.1016/j.compositesa.2006.06.019
Mahjoub, R., Yatim, J. M., Mohd Sam, A. R., & Hashemi, S. H. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 55, 103-113. https://doi.org/10.1016/j.conbuildmat.2014.01.036
Minh, N. P., Nhi, T. T. Y., Nguyen, T. N., Bich, S. N., & True, D. T. T. (2019). Some factors influencing the properties of dried watermelon powder during spray drying. Journal of Pharmaceutical Sciences and Research, 11(4), 1416–1421.
Mishra, V., & Biswas, S. (2013). Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Engineering, 51, 561–566. https://doi.org/10.1016/j.proeng.2013.01.079
Mogea, J., Seibert, B., & Smits, W. (1991). Multipurpose palms: the sugar palm (Arenga pinnata (Wurmb) Merr.). Agroforestry Systems, 13(2), 111–129. https://doi.org/10.1007/BF00140236
Mohammed, A. A. B. A., Hasan, Z., Omran, A. A. B., Elfaghi, A. M., Khattak, M. A., Ilyas, R. A., & Sapuan, S. M. (2023). Effect of various plasticizers in different concentrations on physical, thermal, mechanical, and structural properties of wheat starch-based films. Polymers, 15(1), 63. https://doi.org/10.3390/ polym15010063
Nasir, N. A. F. M., Jamaluddin, J., Zainudin, Z., Busheri, M. M., Adrus, N., Azim, F. S. S., & Hasham, R. (2020). The effect of alkaline treatment onto physical, thermal, mechanical and chemical properties of lemba leaves fibres as new resources of biomass. Pertanika Journal of Science and Technology, 28(4). https://doi.org/10.47836/pjst.28.4.21
Prabhakar, M. N., Shah, A. U. R., & Song, J. I. (2015). A Review on the flammability and flame retardant properties of natural fibers and polymer matrix based composites. Composites Research, 28(2), 29–39. https://doi.org/10.7234/composres.2015.28.2.029
Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172, 566-581. https://doi.org/10.1016/j.jclepro.2017.10.101
Scida, D., Assarar, M., Poilâne, C., & Ayad, R. (2013). Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Composites Part B: Engineering, 48, 51–58. https://doi.org/10.1016/j.compositesb.2012.12.010
Sharba, M. J., Leman, Z., Sultan, M. T. H., Ishak, M. R., & Hanim, M. A. A. (2016). Tensile and compressive properties of woven kenaf/glass sandwich hybrid composites. International Journal of Polymer Science, 2016, 1235048. https://doi.org/10.1155/2016/1235048
Shih, Y. F. (2007). Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Materials Science and Engineering: A, 445–446, 289–295. https://doi.org/10.1016/j.msea.2006.09.032
Song, L., Wang, D., Liu, X., Yin, A., & Long, Z. (2023). Prediction of mechanical properties of composite materials using multimodal fusion learning. Sensors and Actuators A: Physical, 358, 114433. https://doi.org/10.1016/j.sna.2023.114433
Suriani, M. J., Radzi, F. S. M., Ilyas, R. A., Petrů, M., Sapuan, S. M., & Ruzaidi, C. M. (2021). Flammability, tensile, and morphological properties of oil palm empty fruit bunches fiber/pet yarn-reinforced epoxy fire retardant hybrid polymer composites. Polymers, 13(8), 1282. https://doi.org/10.3390/polym13081282
Tarique, J., Sapuan, S. M., Khalina, A., Sherwani, S. F. K., Yusuf, J., & Ilyas, R. A. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology, 13, 1191–1219. https://doi.org/10.1016/j.jmrt.2021.05.047
Tarique, J, Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 13900. https://doi.org/10.1038/s41598-021-93094-y
Tarique, J, Sapuan, S. M., Khalina, A., Ilyas, R. A., & Zainudin, E. S. (2022). Thermal, flammability, and antimicrobial properties of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites for food packaging applications. International Journal of Biological Macromolecules, 213(January), 1–10. https://doi.org/10.1016/j.ijbiomac.2022.05.104
Tarique, J., Sapuan, S. M., & Khalina, A. (2022). Extraction and characterization of a novel natural lignocellulosic (Bagasse and Husk) fibers from arrowroot (Maranta Arundinacea). Journal of Natural Fibers, 19(15), 9914–9930. https://doi.org/10.1080/15440478.2021.1993418
Venkateshwaran, N., Elayaperumal, A., & Jagatheeshwaran, M. S. (2011). Effect of fiber length and fiber content on mechanical properties of banana fiber/epoxy composite. Journal of Reinforced Plastics and Composites, 30(19), 1621–1627. https://doi.org/10.1177/0731684411426810
Vijay, R., & Singaravelu, D. L. (2016). Experimental investigation on the mechanical properties of Cyperus pangorei fibers and jute fiber-based natural fiber composites. International Journal of Polymer Analysis and Characterization, 21(7), 617–627. https://doi.org/10.1080/1023666X.2016.1192354
Xiao, F., Bedane, A. H., Zhao, J. X., Mann, M. D., & Pignatello, J. J. (2018). Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar). Science of The Total Environment, 618, 276–283. https://doi.org/10.1016/j.scitotenv.2017.11.008
Yousif, B. F., Shalwan, A., Chin, C. W., & Ming, K. C. (2012). Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design, 40, 378–385. https://doi.org/10.1016/j.matdes.2012.04.017
ISSN 1511-3701
e-ISSN 2231-8542