Home / Regular Issue / JTAS Vol. 31 (S1) 2023 / JST(S)-0609-2023

 

Extraction and Characterization of Novel Ligno-Cellulosic Fiber from Wrightia tinctoria and Cebia pentandra Plant for Textile and Polymer Composite Applications

Divya Sundarraj, Grace Annapoorani Soundarajan, Indran Suyambulingam, Divya Divakaran, Sanjay Mavinkere Rangappa and Suchart Siengchin

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023

DOI: https://doi.org/10.47836/pjst.31.S1.07

Keywords: Cebia pentandra, lignocelluloses, SEM, TGA, wrightia tinctoria, XRD

Published on: 27 October 2023

Natural fibers derived from cellulose and ligno-celluloses materials have many advantages, such as being renewable, low density, inexhaustible, and cheap rather than synthetic fibers. Researchers and scientists are searching for a new fiber source that can be processed environmentally sustainable. The aim is to produce an organic and Eco-friendly product. The present investigation aims to extract and characterize ligno-cellulosic fiber from the seedpod of Wrightia tinctoria (WT) and Cebia pentandra (CP) plants. The extraction of WT fibers (WTFs) and CP fibers (CPFs) was carried out using the hand-stripping method. The structural and functional Characterization of WTFs and CPFs were determined using Scanning Electron Microscope (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, Chemical analysis, X-ray diffraction studies (XRD), and the thermal behavior of fibers determined by using Thermo Gravimetric Analysis (TGA). The results indicated that WTFs composed of 75% cellulose, 14% lignin, and 0.55% wax content were, as the CPFs were composed of 38% cellulose, 15% lignin, and wax content of 2.34%. The SEM micrograph confirms that both fibers were hollow structures with thin cell walls and luminous because of the wax content presence on the surface of the fiber. The crystallinity percentage of WTFs and CPFs was calculated from XRD studies and is valued at 62% and 52%. Thermo gravimetric analysis revealed that WTFs and CPFs were thermally stable up to 460°C and 350°C. The above characterization results confirm that WTFs and CPFs have a wide scope in textile and polymer composite applications.

  • Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials and Design, 47, 424–442. https://doi.org/10.1016/j.matdes.2012.11.025

  • Babu, B. G. G., Princewinston, D., Saravanakumar, S. S. S., Khan, A., Aravind Bhaskar, P. V. V., Indran, S., & Divya, D. (2020). Investigation on the physicochemical and mechanical properties of novel alkali-treated phaseolus vulgaris fibers. Journal of Natural Fibers, 19(2), 770-781. https://doi.org/10.1080/15440478.2020.1761930

  • Bharath, K. N., Pasha, M., & Nizamuddin, B. A. (2016). Characterization of natural fiber (sheep wool)-reinforced polymer-matrix composites at different operating conditions. Journal of Industrial Textiles, 45(5), 730–751. https://doi.org/10.1177/1528083714540698

  • Conrad, C. M. (1944). Determination of wax in cotton fiber: A new alcohol extraction method. Industrial and Engineering Chemistry, 16(8), 745–748. https://doi.org/10.1021/i560136a007

  • Desore, A., & Narula, S. A. (2018). An overview on corporate response towards sustainability issues in textile industry. Environment, Development and Sustainability, 20(4), 1439-1459. https://doi.org/10.1007/s10668-017-9949-1

  • Divya, D., Indran, S., Sanjay, M. R., & Siengchin, S. (2021). Forecasts of natural fiber reinforced polymeric composites and its degradability concerns – A review. In A. Khan, M. Sanjay, Rangappa, S. Siengchin., & A. M. Asiri (Eds.), Biobased composites: Processing, characterization, properties, and applications (pp. 175–1960). Wiley. https://doi.org/10.1002/9781119641803.CH13

  • Divya, D., Jenish, I., & Raja, S. (2022). Comprehensive characterization of Furcraea selloa K. Koch peduncle fiber-reinforced polyester composites—Effect of fiber length and weight ratio. Advances in Materials Science and Engineering, 2022, Article 8099500. https://doi.org/10.1155/2022/8099500

  • Divya, D., Suyambulingam, I., Sanjay, M. R., & Siengchin, S. (2022). Suitability examination of novel cellulosic plant fiber from Furcraea selloa K. Koch peduncle for a potential polymeric composite reinforcement. Polymer Composites, 43(7), 4223-4243. https://doi.org/10.1002/pc.26683

  • Durai, P. N., Viswalingam, K., Divya, D., & Senthilkumar, B. (2022). Mechanical, thermal, and surface morphological properties of Musa acuminate peduncle fiber-reinforced polymeric composite: Effect of alkalization and fiber loading. Polymer Composites, 43(8), 5107–5118. https://doi.org/10.1002/pc.26800

  • Fatma, T., & Jahan, S. (2018). Extraction of unconventional bast fibers from Kydia calycina plant and their characterisation. Journal of Natural Fibers, 15(5), 697–706. https://doi.org/10.1080/15440478.2017.1354745

  • Gandhi, V. C. S., Jenish, I., Indran, S., & Rajan, D. Y. (2022). Mechanical and thermal analysis of Cissus quadrangularis stem fiber/epoxy composite with micro-red mud filler composite for structural application. Transactions of the Indian Institute of Metals, 75(3), 737–747. https://doi.org/10.1007/s12666-021-02478-1

  • Ilangovan, M., Guna, V., Hu, C., Nagananda, G. S., & Reddy, N. (2018). Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Industrial Crops and Products, 112, 556–560. https://doi.org/10.1016/j.indcrop.2017.12.042

  • Ilangovan, M., Guna, V., Prajwal, B., Jiang, Q., & Reddy, N. (2020). Extraction and characterisation of natural cellulose fibers from Kigelia africana. Carbohydrate Polymers, 236, 115996. https://doi.org/10.1016/j.carbpol.2020.115996

  • Indran, S., Raj, R. D. E., Daniel, B. S. S., & Binoj, J. S. (2018). Comprehensive characterization of natural Cissus quadrangularis stem fiber composites as an alternate for conventional FRP composites. Journal of Bionic Engineering, 15(5), 914–923. https://doi.org/10.1007/s42235-018-0078-9

  • Indran, S., Raj, R. D. E., Daniel, B. S. S., & Saravanakumar, S. S. (2016). Cellulose powder treatment on Cissus quadrangularis stem fiber-reinforcement in unsaturated polyester matrix composites. Journal of Reinforced Plastics and Composites, 35(3), 212–227. https://doi.org/10.1177/0731684415611756

  • Iyyadurai, J., Arockiasamy, F. S., Manickam, T., Rajaram, S., Suyambulingam, I., & Siengchin, S. (2023). Experimental investigation on mechanical, thermal, viscoelastic, water absorption, and biodegradability behavior of Sansevieria ehrenbergii fiber reinforced novel polymeric composite with the addition of coconut shell ash powder. Journal of Inorganic and Organometallic Polymers and Materials, 33(3), 796-809. https://doi.org/10.1007/S10904-023-02537-8

  • Jagadeesan, R., Suyambulingam, I., Divakaran, D., & Siengchin, S. (2022). Novel sesame oil cake biomass waste derived cellulose micro-fillers reinforced with basalt/banana fibre-based hybrid polymeric composite for lightweight applications. Biomass Conversion and Biorefinery, 13(5), 4443-4458. https://link.springer.com/article/10.1007/s13399-022-03570-2

  • Jagadeesan, R., Suyambulingam, I., Somasundaram, R., Divakaran, D., & Siengchin, S. (2023). Isolation and characterization of novel microcellulose from Sesamum indicum agro-industrial residual waste oil cake: conversion of biowaste to wealth approach. Biomass Conversion and Biorefinery, 13(5), 4427-4441. https://doi.org/10.1007/S13399-022-03690-9

  • Karthik, T., & Murugan, R. (2013). Characterization and analysis of ligno-cellulosic seed fiber from Pergularia daemia plant for textile applications. Fibers and Polymers, 14(3), 465–472. https://doi.org/10.1007/s12221-013-0465-0

  • Khan, A., Vijay, R., Singaravelu, D. L., Sanjay, M. R., Siengchin, S., Verpoort, F., Alamry, K. A., & Asiri, A. M. (2021a). Characterization of natural fibers from Cortaderia selloana grass (Pampas) as reinforcement material for the production of the composites. Journal of Natural Fibers, 18(11), 1893–1901. https://doi.org/10.1080/15440478.2019.1709110

  • Khan, A., Vijay, R., Singaravelu, D. L., Sanjay, M. R., Siengchin, S., Verpoort, F., Alamry, K. A., & Asiri, A. M. (2021b). Extraction and characterization of natural fiber from Eleusine indica grass as reinforcement of sustainable fiber reinforced polymer composites. Journal of Natural Fibers, 18(11), 1742–1750. https://doi.org/10.1080/15440478.2019.1697993

  • Loganathan, T. M., Sultan, M. T. H., Ahsan, Q., Jawaid, M., Naveen, J., Md Shah, A. U., & Hua, L. S. (2020). Characterization of alkali treated new cellulosic fibre from Cyrtostachys renda. Journal of Materials Research and Technology, 9(3), 3537–3546. https://doi.org/10.1016/j.jmrt.2020.01.091

  • Macedo, M. J. P., Silva, G. S., Feitor, M. C., Costa, T. H. C., Ito, E. N., & Melo, J. D. D. (2020). Surface modification of kapok fibers by cold plasma surface treatment. Journal of Materials Research and Technology, 9(2), 2467–2476. https://doi.org/10.1016/j.jmrt.2019.12.077

  • Madhu, P., Sanjay, M. R., Pradeep, S., Subrahmanya Bhat, K., Yogesha, B., & Siengchin, S. (2019). Characterization of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites. Journal of Materials Research and Technology, 8(3), 2597–2604. https://doi.org/10.1016/j.jmrt.2019.03.006

  • Manimekalai, G., Kavitha, S., Divya, D., Indran, S., & Binoj, J. S. (2021). Characterization of enzyme treated cellulosic stem fiber from Cissus quadrangularis plant: An exploratory investigation. Current Research in Green and Sustainable Chemistry, 4, Article 100162. https://doi.org/10.1016/j.crgsc.2021.100162

  • Mohan, S. J., Devasahayam, P. S. S., Suyambulingam, I., & Siengchin, S. (2022). Suitability characterization of novel cellulosic plant fiber from Ficus benjamina L. aerial root for a potential polymeric composite reinforcement. Polymer Composites, 43(12), 9012-9026. https://doi.org/10.1002/pc.27080

  • Moshi, A. A. M., Ravindran, D., Bharathi, S. R. S., Indran, S., & Priyadharshini, G. S. (2020). Characterization of surface-modified natural cellulosic fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules, 156, 997–1006. https://doi.org/10.1016/j.ijbiomac.2020.04.117

  • Moshi, A. A. M., Ravindran, D., Bharathi, S. R. S., Padma, S. R., Indran, S., & Divya, D. (2020). Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant’s stem. International Journal of Biological Macromolecules, 164, 1246–1255. https://doi.org/10.1016/j.ijbiomac.2020.07.225

  • Moshi, A. A. M., Ravindran, D., Bharathi, S. S., Indran, S., Saravanakumar, S. S., & Liu, Y. (2020). Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules, 142, 212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094

  • Pillai, R. S. S., Rajamoni, R., Suyambulingam, I., Goldy, I. R. S., & Divakaran, D. (2022). Synthesis and characterization of cost-effective industrial discarded natural ceramic particulates from Cymbopogon flexuosus plant shoot for potential polymer/metal matrix reinforcement. Polymer Bulletin, 79(10), 8765-8806. https://doi.org/10.1007/s00289-021-03913-5

  • Raja, S., Rajesh, R., Indran, S., Divya, D., & Priyadharshini, G. S. (2022). Characterization of industrial discarded novel Cymbopogon flexuosus stem fiber: A potential replacement for synthetic fiber. Journal of Industrial Textiles, 51(1), 1207S-1234S. https://doi.org/10.1177/15280837211007507

  • Rajan N. M. C., Indran, S., Divya, D., Narayanasamy, P., Khan, A., Asiri, A. M., & Nagarajan, S. (2022). Mechanical and thermal properties of Chloris barbata flower fiber/epoxy composites: Effect of alkali treatment and fiber weight fraction. Journal of Natural Fibers, 19(9), 3453-3466. https://doi.org/10.1080/15440478.2020.1848703

  • Rajeshkumar, G., Hariharan, V., Indran, S., Sanjay, M. R., Siengchin, S., Maran, J. P., Al-Dhabi, N. A., & Karuppiah, P. (2021). Influence of sodium hydroxide (NaOH) treatment on mechanical properties and morphological behaviour of phoenix sp. fiber/epoxy composites. Journal of Polymers and the Environment, 29(3), 765–774. https://doi.org/10.1007/s10924-020-01921-6

  • Ramalakshmi, S., Edaydulla, N., Ramesh, P., & Muthuchelian, K. (2012). Investigation on cytotoxic, antioxidant, antimicrobial and volatile profile of Wrightia tinctoria (Roxb.) R. Br. flower used in Indian medicine. Asian Pacific Journal of Tropical Disease, 2(SUPPL.1), S68-S75. https://doi.org/10.1016/S2222-1808(12)60126-1

  • Ramasamy, S., Karuppuchamy, A., Jayaraj, J. J., Suyambulingam, I., Siengchin, S., & Fischer, S. (2022). Comprehensive characterization of novel Robusta (AAA) banana bracts fibers reinforced polylactic acid based biocomposites for lightweight applications. Polymer Composites, 43(11), 8569-8580. https://doi.org/10.1002/pc.27025

  • Rangappa, S. M., Parameswaranpillai, J., Siengchin, S., Jawaid, M., & Ozbakkaloglu, T. (2022). Bioepoxy based hybrid composites from nano-fillers of chicken feather and lignocellulose Ceiba pentandra. Scientific Reports, 12(1), 397. https://doi.org/10.1038/s41598-021-04386-2

  • Rantheesh, J., Indran, S., Raja, S., & Siengchin, S. (2023). Isolation and characterization of novel micro cellulose from Azadirachta indica A. Juss agro industrial residual waste oil cake for futuristic applications. Biomass Conversion and Biorefinery, 13(5), 4393-4411. https://doi.org/10.1007/s13399-022-03467-0

  • Sanjay, M. R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C. I., & Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers, 207, 108–121. https://doi.org/10.1016/j.carbpol.2018.11.083

  • Saravanakumar, S. S., Kumaravel, A., Nagarajan, T., Sudhakar, P., & Baskaran, R. (2013). Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers, 92(2), 1928–1933. https://doi.org/10.1016/j.carbpol.2012.11.064

  • Sari, N. H., Suteja, Ilyas, R. A., Syafri, E., & Indran, S. (2021). Characterization of the density and mechanical properties of corn husk fiber reinforced polyester composites after exposure to ultraviolet light. Functional Composites and Structures, 3(3), 034001. https://doi.org/10.1088/2631-6331/ac0ed3

  • Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., & Conrad, C. M. (1959). Empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003

  • Selvan, M. T. G. A., Binoj, J. S., Moses, J. T. E. J., Sai, N. P., Siengchin, S., Sanjay, M. R., & Liu, Y. (2022). Extraction and characterization of natural cellulosic fiber from fragrant screw pine prop roots as potential reinforcement for polymer composites. Polymer Composites, 43(1), 320–329. https://doi.org/10.1002/pc.26376

  • Senthamaraikannan, P., Saravanakumar, S. S., Sanjay, M. R., Jawaid, M., & Siengchin, S. (2019). Physico-chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement. Materials Letters, 240, 221–224. https://doi.org/10.1016/j.matlet.2019.01.024

  • Subramanian, K., Senthil Kumar, P., Jeyapal, P., & Venkatesh, N. (2005). Characterization of ligno-cellulosic seed fibre from Wrightia tinctoria plant for textile applications-an exploratory investigation. European Polymer Journal, 41(4), 853–861. https://doi.org/10.1016/j.eurpolymj.2004.10.037

  • Sumesh, K. R., Kavimani, V., Rajeshkumar, G., Indran, S., & Saikrishnan, G. (2021). Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. Journal of Material Cycles and Waste Management, 23(4), 1277–1288. https://doi.org/10.1007/s10163-021-01196-6

  • Sundaram, R. S., Rajamoni, R., Suyambulingam, I., & Isaac, R. (2021). Comprehensive characterization of industrially discarded Cymbopogon flexuosus stem fiber reinforced unsaturated polyester composites: Effect of fiber length and weight fraction. Journal of Natural Fibers, 19(13), 7241-7256. https://doi.org/10.1080/15440478.2021.1944435

  • Sunesh, N. P., Indran, S., Divya, D., & Suchart, S. (2022). Isolation and characterization of novel agrowaste-based cellulosic micro fillers from Borassus flabellifer flower for polymer composite reinforcement. Polymer Composites, 43(9), 6476–6488. https://doi.org/10.1002/pc.26960

  • Surendran, A. N., Ajjarapu, K. P. K., Arumugham, A. A., Kate, K., & Satyavolu, J. (2022). Characterization of industry grade soybean wax for potential applications in natural fiber reinforced composite (NFRC) filaments. Industrial Crops and Products, 186, Article 115163. https://doi.org/10.1016/J.INDCROP.2022.115163

  • Vijay, R., Singaravelu, D. L., Vinod, A., Sanjay, M. R., Siengchin, S., Jawaid, M., Khan, A., & Parameswaranpillai, J. (2019). Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International Journal of Biological Macromolecules, 125, 99–108. https://doi.org/10.1016/j.ijbiomac.2018.12.056

  • Vinod, A., Yashas Gowda, T. G., Vijay, R., Sanjay, M. R., Gupta, M. K., Jamil, M., Kushvaha, V., & Siengchin, S. (2021). Novel Muntingia calabura bark fiber reinforced green-epoxy composite: A sustainable and green material for cleaner production. Journal of Cleaner Production, 294, Article 126337. https://doi.org/10.1016/j.jclepro.2021.126337

  • Witayakran, S., Smitthipong, W., Wangpradid, R., Chollakup, R., & Clouston, P. L. (2017). Natural fiber composites: Review of recent automotive trends. In Encyclopedia of Renewable and Sustainable Materials, 2, 166-174. https://doi.org/10.1016/b978-0-12-803581-8.04180-1

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST(S)-0609-2023

Download Full Article PDF

Share this article

Recent Articles