e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 31 (S1) 2023 / JST(S)-0610-2023


Mechanical, Morphological, and Fire Behaviors of Sugar Palm/Glass Fiber Reinforced Epoxy Hybrid Composites

Vasi Uddin Siddiqui, Salit Mohd Sapuan and Tarique Jamal

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023


Keywords: flammability, hybrid composites, mechanical properties, morphology, sugar palm fiber

Published on: 27 October 2023

This research aims to investigate using sugar palm fiber (SPF) and glass fiber (GF) in an epoxy matrix to develop composite materials with improved mechanical, morphological, and flammability properties. The mechanical and flammability properties are examined per ASTM standards, while the morphological study examines the fractured surfaces of the samples. Using the hand lay-up technique, the hybrid composite comprises 15% SPF, 15% GF, and 70% epoxy resin. Three treatments are applied to the SPF: untreated, alkaline treated, and benzoyl chloride treated, which enables research into the effect of fiber treatment on mechanical properties and flammability. The morphological investigation reveals that both treated SPF/GF/EP composites exhibit lower tensile strength than the untreated SPF/GF/EP composite due to inadequate mechanical interlocking at the fiber-matrix interface. However, the alkaline-treated SPF/GF/EP composite demonstrates a 24.8% improvement in flexural strength, a 1.52% increase in impact strength, and a 9.76% enhancement in flammability. Similarly, the benzoyl chloride-treated SPF/GF/EP composite improves flexural strength, impact strength, and flammability by 24.6%, 0.51%, and 5.66%, respectively. These results highlight the potential of fiber treatment to improve composite materials’ mechanical and flammability properties.

  • Ahmed, Q. I. (2013). Fracture toughness of sugar palm fiber reinforced epoxy composites. International Journal of Science and Research, 2(12), 273–279.

  • ASTM D635. (2022). Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position. ASTM International.

  • ASTM D790. (2017). Standard test method for flexural properties ofunreinforced and reinforced plastics and electrical insulation materials. ASTM International.

  • ASTM D256-10. (2015). Determining the izod pendulum impact resistance of plastic. ASTM International.

  • ASTM D638-10. (2015). Standard test method for tensile properties of plastics. ASTM International.

  • Azammi, A. M. N., Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Atikah, M. S. N., Asrofi, M., & Atiqah, A. (2019). Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In K. L. Goh, M. K. Aswathi, R. T. De Silva & S. Thomas (Eds.) Interfaces in particle and fibre reinforced composites- From macro to nano scales (pp.1–68). Woodhead Publishing.

  • Bachtiar, D., Salit, M. S., Zainuddin, E., Abdan, K., & Dahlan, K. Z. H. M. (2011). Effects of alkaline treatment and a compatibilizing agent on tensile properties of sugar palm fibre-reinforced high impact polystyrene composites. BioResources,6(4), 4815-4823.

  • Bachtiar, D., Sapuan, S. M., & Hamdan, M. M. (2008). The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials & Design, 29(7), 1285–1290.

  • Benyahia, A., & Merrouche, A. (2014). Effect of chemical surface modifications on the properties of alfa fiber-polyester composites. Polymer-Plastics Technology and Engineering, 53(4), 403–410.

  • Cartié, D. D. R., & Irving, P. E. (2002). Effect of resin and fibre properties on impact and compression after impact performance of CFRP. Composites Part A: Applied Science and Manufacturing, 33(4), 483–493.

  • Chee, S. S., Jawaid, M., Alothman, O. Y., & Yahaya, R. (2020). Thermo-oxidative stability and flammability properties of bamboo/kenaf/nanoclay/epoxy hybrid nanocomposites. RSC Advances, 10(37), 21686–21697.

  • Davoodi, M. M., Sapuan, S. M., Ahmad, D., Ali, A., Khalina, A., & Jonoobi, M. (2010). Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Materials and Design, 31(10), 4927–4932.

  • Dong, C., & Davies, I. J. (2015). Flexural strength of bidirectional hybrid epoxy composites reinforced by E glass and T700S carbon fibres. Composites Part B: Engineering, 72, 65–71.

  • Harussani, M. M., Sapuan, S. M., Khalina, A., Rashid, U., & Tarique, J. (2021, April 7-9). Slow pyrolysis of disinfected COVID-19 non-woven polypropylene (PP) waste. [Paper presentation]. International Symposium on Applied Sciences and Engineering (ISASE), Erzurum, Turkey.

  • Huzaifah, M. R. M., Sapuan, S. M., Leman, Z., & Ishak, M. R. (2019). Effect of soil burial on physical, mechanical and thermal properties of sugar palm fibre reinforced vinyl ester composites. Fibers and Polymers, 20(9), 1893–1899.

  • Huzaifah, M. R. M., Sapuan, S. M., Leman, Z., & Ishak, M. R. (2016, Month date PLEASE PROVIDE THE INFORMATION). A review on sugar palm (Arenga Pinnata): Characterization of sugar palm fibre. [Paper presentation]. Proceedings of the 5th Postgraduate Seminar on Natural Fiber Composites, Selangor, Malaysia.

  • Ibrahim, M. S., Sapuan, S. M., & Faieza, A. A. (2012). Mechanical and thermal properties of composites from unsaturated polyester filled with oil palm ash. Journal of Mechanical Engineering and Sciences, 2, 133-147.

  • Ibrahim, N. A., Hadithon, K. A., & Abdan, K. (2010). Effect of Fiber Treatment on Mechanical Properties of Kenaf Fiber-Ecoflex Composites. Journal of Reinforced Plastics and Composites, 29(14), 2192–2198.

  • Ilyas, R. A, Sapuan, S. M., Kirubaanand, W., Zahfiq, Z. M., Atikah, M. S. N., Ibrahim, R., Radzi, A. M., Nadlene, R., Asyraf, M. R. M., Hazrol, M. D., Sherwani, S. F. K., Harussani, M. M., Tarique, J., Nazrin, A., & Syafiq, R. (2021). Roselle: Production, product development, and composites. In S. M. Sapuan & A. M. Radzi (Eds.) Roselle (pp.1–23). Academic Press.

  • Ilyas, R. A., Sapuan, S. M., Atikah, M. S. N., Ibrahim, R., Hazrol, M. D., Sherwani, S. F. K., Jamal, T., Nazrin, A., & Syafiq, R. (2020, November Date PLEASE PROVIDE THE INFORMATION). Natural fibre : A promising source for the production of nanocellulose. [Paper presentation]. 7th Postgraduate Seminar On Natural Fibre Reinforced Polymer Composites, Selangor, Malaysia.

  • Ilyas, R. A., Sapuan, S. M., Kadier, A., Krishnan, S., Atikah, M. S. N., Ibrahim, R., Nazrin, A., Syafiq, R., Misri, S., Huzaifah, M. R. M., & Hazrol, M. D. (2020). Mechanical testing of sugar palm fiber reinforced sugar palm biopolymer composites. Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, 2020, 89-110.

  • Ishak, M. R., Leman, Z., Sapuan, S. M., Salleh, M. Y., & Misri, S. (2009). The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. International Journal of Mechanical and Materials Engineering, 4(3), 316–320.

  • Jones, F. R., & Huff, N. T. (2018). The structure and properties of glass fibers. In A. R. Bunsell (Ed.) Handbook of properties of textile and technical fibres (pp.757–803). Woodhead Publishing.

  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Composites : Part B Chemical treatments on plant-based natural fibre reinforced polymer composites : An overview. Composites Part B, 43(7), 2883–2892.

  • Kamaruddin, Z. H., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., Alamjuri, R. H., & Yusof, F. A. M. (2022). Influence of alkali treatment on the mechanical, thermal, water absorption, and biodegradation properties of cymbopogan citratus fiber-reinforced, thermoplastic cassava starch–palm wax composites. Polymers, 14(14), 2769.

  • Lau, K., Hung, P., Zhu, M. H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222–233.

  • Izwan, S. M., Sapuan, S. M., Zuhri, M. Y. M., & Muhamed, A. R. (2022). Effect of benzoyl treatment on the performance of sugar palm/kenaf fiber-reinforced polypropylene hybrid composites. Textile Research Journal, 92(5–6), 706–716.

  • Orue, A., Jauregi, A., Unsuain, U., Labidi, J., Eceiza, A., & Arbelaiz, A. (2016). The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Composites Part A: Applied Science and Manufacturing, 84, 186–195.

  • Saba, N., Jawaid, M., Alothman, O. Y., Paridah, M. T., & Hassan, A. (2016). Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 35(6), 447–470.

  • Safri, S. N. A., Sultan, M. T. H., Saba, N., & Jawaid, M. (2018). Effect of benzoyl treatment on flexural and compressive properties of sugar palm/glass fibres/epoxy hybrid composites. Polymer Testing, 71, 362–369.

  • Sahari, J., Sapuan, S. M., Ismarrubie, Z. N., & Rahman, M. Z. (2012). Physical and chemical properties of different morphological parts of sugar palm fibres. Fibres and Textiles in Eastern Europe, 91(2), 21–24.

  • Sapuan, S. M., Ilyas, R. A., Ishak, M. R., Leman, Z., Huzaifah, M. R. M., Ammar, I. M., & Atikah, M. S. N. (2018). Development of sugar palm–based products: A community project. In S. M. Sapuan, J. Sahari, M. R. & Ishak, M. L. Sanyang. Sugar palm biofibers, biopolymers, and biocomposites (pp. 245–266). CRC Press.

  • Sherwani, S. F. K., Zainudin, E. S., Sapuan, S. M., Leman, Z., & Abdan, K. (2021). Mechanical properties of sugar palm (Arenga pinnata Wurmb. Merr)/glass fiber-reinforced poly(lactic acid) hybrid composites for potential use in motorcycle components. Polymers, 13(18), 3061.

  • Shukor, F., Hassan, A., Saiful Islam, M., Mokhtar, M., & Hasan, M. (2014). Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Materials & Design (1980-2015), 54, 425–429.

  • Siakeng, R., Jawaid, M., Ariffin, H., & Sapuan, S. M. (2019). Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polymer Composites, 40(5), 2000–2011.

  • Suriani, M. J., Radzi, F. S. M., Ilyas, R. A., Petrů, M., Sapuan, S. M., & Ruzaidi, C. M. (2021). Flammability, tensile, and morphological properties of oil palm empty fruit bunches fiber/pet yarn-reinforced epoxy fire retardant hybrid polymer composites. Polymers, 13(8), 1282.

  • Swain, P. T. R., & Biswas, S. (2017). Influence of fiber surface treatments on physico-mechanical behaviour of jute/epoxy composites impregnated with aluminium oxide filler. Journal of Composite Materials, 51(28), 3909–3922.

  • Syaqira S, S. N., Leman, Z., Sapuan, S. M., Dele-Afolabi, T. T., Azmah Hanim, M. A., & Budati, S. (2020). Tensile strength and moisture absorption of sugar palm-polyvinyl butyral laminated composites. Polymers, 12(9).

  • Tarique, J., Sapuan, S. M., Khalina, A., Sherwani, S. F. K., Yusuf, J., & Ilyas, R. A. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology, 13, 1191–1219.

  • Tarique, J., Zainudin, E. S., Sapuan, S. M., Ilyas, R. A., & Khalina, A. (2022). Physical, mechanical, and morphological performances of arrowroot (Maranta arundinacea) Fiber reinforced arrowroot starch biopolymer composites. Polymers, 14(3), 388.

  • Tsunoda, M., Kido, T., Mogi, S., Sugiura, Y., Miyajima, E., Kudo, Y., Kumazawa, T., & Aizawa, Y. (2014). Skin irritation to glass wool or continuous glass filaments as observed by a patch test among human Japanese volunteers. Industrial Health, 52(5), 439–444.

  • Turk, M., Hamerton, I., & Ivanov, D. S. (2017). Ductility potential of brittle epoxies: Thermomechanical behaviour of plastically-deformed fully-cured composite resins. Polymer, 120, 43–51.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Recent Articles