e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 29 (1) Jan. 2021 / JST-2065-2020


Combined Impacts of Predation, Mutualism and Dispersal on the Dynamics of a Four-Species Ecological System

Murtala Bello Aliyu and Mohd Hafiz Mohd

Pertanika Journal of Tropical Agricultural Science, Volume 29, Issue 1, January 2021


Keywords: Dispersal, Hopf bifurcation, limit cycle, multi-species, stability, transcritical bifurcation

Published on: 22 January 2021

Multi-species and ecosystem models have provided ecologist with an excellent opportunity to study the effects of multiple biotic interactions in an ecological system. Predation and mutualism are among the most prevalent biotic interactions in the multi-species system. Several ecological studies exist, but they are based on one-or two-species interactions, and in real life, multiple interactions are natural characteristics of a multi-species community. Here, we use a system of partial differential equations to study the combined effects of predation, mutualism and dispersal on the multi-species coexistence and community stability in the ecological system. Our results show that predation provided a defensive mechanism against the negative consequences of the multiple species interactions by reducing the net effect of competition. Predation is critical in the stability and coexistence of the multi-species community. The combined effects of predation and dispersal enhance the multiple species coexistence and persistence. Dispersal exerts a positive effect on the system by supporting multiple species coexistence and stability of community structures. Dispersal process also reduces the adverse effects associated with multiple species interactions. Additionally, mutualism induces oscillatory behaviour on the system through Hopf bifurcation. The roles of mutualism also support multiple species coexistence mechanisms (for some threshold values) by increasing the stable coexistence and the stable limit cycle regions. We discover that the stability and coexistence mechanisms are controlled by the transcritical and Hopf bifurcation that occurs in this system. Most importantly, our results show the important influences of predation, mutualism and dispersal in the stability and coexistence of the multi-species communities.

  • Abbott, K. C. (2011). A dispersal‐induced paradox: Synchrony and stability in stochastic metapopulations. Ecology Letters, 14(11), 1158-1169. doi: 10.1111/j.1461-0248.2011.01670.x.

  • Addicott, J. F. (1979). A multispecies aphid–ant association: Density dependence and species-specific effects. Canadian Journal of Zoology, 57(3), 558–569. doi: 10.1139/z79-066.

  • Addicott, J. F. (1998). Regulation of mutualism between yuccas and yucca moths: Population level processes. Oikos, 81(1), 119-129. doi: 10.2307/3546474.

  • Amarasekare, P. (2015). Evolution of dispersal in a multi-trophic community context. Oikos, 125(4), 514–525. doi: 10.1111/oik.02258.

  • Aslan, C. E., Zavaleta, E. S., Tershy, B., & Croll, D. (2013). Mutualism disruption threatens global plant biodiversity: A systematic review. PLoS ONE, 8(6), 1-11. doi: 10.1371/journal.pone.0066993.

  • Barraquand, F., Louca, S., Abbott, K. C., Cobbold, C. A., Cordoleani, F., DeAngelis, D. L., … & Murray, D. L. (2017). Moving forward in circles: Challenges and opportunities in modelling population cycles. Ecology Letters, 20(8), 1074–1092. doi: 10.1111/ele.12789.

  • Bascompte, J. (2019). Mutualism and biodiversity. Current Biology, 29(11), R467–R470. doi: 10.1016/j.cub.2019.03.062.

  • Bever, J. D. (2003). Soil community feedback and the coexistence of competitors: Conceptual frameworks and empirical tests. New Phytologist, 157(3), 465-473. doi: 10.1046/j.1469-8137.2003.00714.x.

  • Bjørnstad, O. N. (2000). Cycles and synchrony: Two historical “experiments” and one experience. Journal of Animal Ecology, 69(5), 869-873. doi: 10.1046/j.1365-2656.2000.00444.x.

  • Bonte, D., Vandenbroecke, N., Lens, L., & Maelfait, J. P. (2003). Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1524), 1601-1607. doi:

  • Briggs, C. J., & Hoopes, M. F. (2004). Stabilizing effects in spatial parasitoid–host and predator–prey models: A review. Theoretical Population Biology, 65(3), 299-315. doi: 10.1016/j.tpb.2003.11.001.

  • Bronstein, J. L. (2001a). The exploitation of mutualisms. Ecology Letters, 4(3), 277-287. doi: 10.1046/j.1461-0248.2001.00218.x.

  • Bronstein, J. L. (2001b). The costs of mutualism. American Zoologist, 41(4), 825-839. doi: 10.1093/icb/41.4.825.

  • Bruno, J. F., Stachowicz, J. J., & Bertness, M. D. (2003). Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution, 18(3), 119-125. doi: 10.1016/s0169-5347(02)00045-9.

  • Caro, T., & Stoner, C. (2003). The potential for interspecific competition among African carnivores. Biological Conservation, 110(1), 67-75. doi: 10.1016/s0006-3207(02)00177-5.

  • Carter, N., Jasny, M., Gurung, B., & Liu, J. (2015). Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Global Ecology and Conservation, 3, 149-162. doi: 10.1016/j.gecco.2014.11.013.

  • Chaianunporn, T., & Hovestadt, T. (2012). Evolution of dispersal in metacommunities of interacting species. Journal of Evolutionary Biology, 25(12), 2511-2525. doi: 10.1111/j.1420-9101.2012.02620.x.

  • Chaianunporn, T., & Hovestadt, T. (2015). Evolutionary responses to climate change in parasitic systems. Global Change Biology, 21(8), 2905-2916. doi: 10.1111/gcb.12944.

  • Cheng, B. S., Ruiz, G. M., Altieri, A. H., & Torchin, M. E. (2018). The biogeography of invasion in tropical and temperate seagrass beds: Testing interactive effects of predation and propagule pressure. Diversity and Distributions, 25(2), 285-297. doi: 10.1111/ddi.12850.

  • Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31(1), 343-366. doi: 10.1146/annurev.ecolsys.31.1.343.

  • Chesson, P., & Kuang, J. J. (2008). The interaction between predation and competition. Nature, 456(7219), 235-238. doi: 10.1038/nature07248.

  • Chomicki, G., Weber, M., Antonelli, A., Bascompte, J., & Kiers, E. T. (2019). The impact of mutualisms on species richness. Trends in Ecology and Evolution, 34(8), 698-711. doi:

  • Dey, S., & Joshi, A. (2006). Stability via asynchrony in drosophila metapopulations with low migration rates. Science, 312(5772), 434-436. doi: 10.1126/science.1125317.

  • Dytham, C. (2009). Evolved dispersal strategies at range margins. Proceedings of the Royal Society B: Biological Sciences, 276(1661), 1407-1413. doi: 10.1098/rspb.2008.1535.

  • Fontaine, C., Guimarães Jr, P. R., Kéfi, S., Loeuille, N., Memmott, J., van Der Putten, W. H., … & Thébault, E. (2011). The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 14(11), 1170-1181. doi: 10.1111/j.1461-0248.2011.01688.x.

  • Gause, G. F., & Witt, A. A. (1935). Behavior of mixed populations and the problem of natural selection. The American Naturalist, 69(725), 596-609. doi: 10.1086/280628.

  • Georgelin, E., & Loeuille, N. (2014). Dynamics of coupled mutualistic and antagonistic interactions, and their implications for ecosystem management. Journal of Theoretical Biology, 346, 67-74. doi: 10.1016/j.jtbi.2013.12.012.

  • Godsoe, W., Murray, R., & Plank, M. J. (2015). Information on biotic interactions improves transferability of distribution models. The American Naturalist, 185(2), 281-290. doi: 10.1086/679440.

  • Green, D. M. (2009). Coevolution of dispersal in a parasitoid–host system. Population Ecology, 51(2), 253-260. doi: 10.1007/s10144-008-0131-3.

  • Hanski, I. (1998). Metapopulation dynamics. Nature, 396(6706), 41-49. doi: 10.1038/23876.

  • Herrera, C. M. (1998). Long-term dynamics of Mediterranean Frugivorous birds and fleshy fruits: A 12-year study. Ecological Monographs, 68(4), 511-538. doi: 10.1890/0012-9615(1998)068[0511:ltdomf]2.0.c.

  • Hixon, M. A., & Menge, B. A. (1991). Species diversity: Prey refuges modify the interactive effects of predation and competition. Theoretical Population Biology, 39(2), 178-200. doi: 10.1016/0040-5809(91)90035-e.

  • Holland, J. N., & DeAngelis, D. L. (2010). A consumer–resource approach to the density-dependent population dynamics of mutualism. Ecology, 91(5), 1286-1295. doi: 10.1890/09-1163.1.

  • Holland, J. N., DeAngelis, D. L., & Bronstein, J. L. (2002). Population dynamics and mutualism: Functional responses of benefits and costs. The American Naturalist, 159(3), 231-244. doi: 10.1086/338510.

  • Holland, J. N., Wang, Y., Sun, S., & DeAngelis, D. L. (2013). Consumer–resource dynamics of indirect interactions in a mutualism–parasitism food web module. Theoretical Ecology, 6(4), 475-493. doi: 10.1007/s12080-013-0181-9.

  • Johnson, C. N., Isaac, J. L., & Fisher, D. O. (2007). Rarity of a top predator triggers continent-wide collapse of mammal prey: Dingoes and marsupials in Australia. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 341-346. doi: 10.1098/rspb.2006.3711.

  • Kendall, B. E., Bjørnstad, O. N., Bascompte, J., Keitt, T. H., & Fagan, W. F. (2000). Dispersal, environmental correlation, and spatial synchrony in population dynamics. The American Naturalist, 155(5), 628-636. doi: 10.1086/303350.

  • Kerr, B., Riley, M. A., Feldman, M. W., & Bohannan, B. J. M. (2002). Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature, 418(6894), 171-174. doi: 10.1038/nature00823.

  • Kindlmann, P., & Burel, F. (2008). Connectivity measures: A review. Landscape Ecology, 23(8), 879-890. doi: 10.1007/s10980-008-9245-4.

  • Kooi, B. W., Kuijper, L. D. J., & Kooijman, S. A. L. M. (2004). Consequences of symbiosis for food web dynamics. Journal of Mathematical Biology, 49(3), 227-271. doi: 10.1007/s00285-003-0256-0.

  • Kool, J. T., Moilanen, A., & Treml, E. A. (2012). Population connectivity: Recent advances and new perspectives. Landscape Ecology, 28(2), 165-185. doi: 10.1007/s10980-012-9819-z.

  • Kot, M., Lewis, M. A., & van den Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77(7), 2027-2042. doi: 10.2307/2265698.

  • Laan, E., & Fox, J. W. (2019). An experimental test of the effects of dispersal and the paradox of enrichment on metapopulation persistence. Oikos, 129(1), 49-58 doi: 10.1111/oik.06552.

  • Lampert, A., & Hastings, A. (2016). Stability and distribution of predator-prey systems: Local and regional mechanisms and patterns. Ecology Letters, 19(3), 279-288. doi: 10.1111/ele.12565.

  • Martignoni, M. M., Hart, M. M., Tyson, R. C., & Garnier, J. (In Press). Diversity within mutualist guilds promotes coexistence and reduces the risk of invasion from an alien mutualist. Proceedings of the Royal Society B: Biological Sciences. doi: 10.1098/rspb.2019.2312.

  • Mitani, N., & Mougi, A. (2017). Population cycles emerging through multiple interaction types. Royal Society Open Science, 4(9), 1-7. doi: 10.1098/rsos.170536.

  • Mohd, M. H. (2019). Diversity in interaction strength promotes rich dynamical behaviours in a three-species ecological system. Applied Mathematics and Computation, 353, 243-253. doi: 10.1016/j.amc.2019.02.007.

  • Mohd, M. H., Murray, R., Plank, M. J., & Godsoe, W. (2017). Effects of biotic interactions and dispersal on the presence-absence of multiple species. Chaos, Solitons and Fractals, 99, 185-194. doi: 10.1016/j.chaos.2017.04.012.

  • Mohd, M. H., Murray, R., Plank, M. J., & Godsoe, W. (2018). Effects of different dispersal patterns on the presence-absence of multiple species. Communications in Nonlinear Science and Numerical Simulation, 56, 115-130. doi: 10.1016/j.cnsns.2017.07.029.

  • Mondor, E. B., Rosenheim, J. A., & Addicott, J. F. (2004). Predator-induced transgenerational phenotypic plasticity in the cotton aphid. Oecologia, 142(1), 104-108. doi: 10.1007/s00442-004-1710-4.

  • Morales, M. A. (2000). Mechanisms and density dependence of benefit in an ant–membracid mutualism. Ecology, 81(2), 482-489. doi: 10.1890/0012-9658(2000)081[0482:MADDOB]2.0.CO;2.

  • Ojonubah, J. O., & Mohd, M. H. (2020). Impacts of asymmetric biotic interactions and environmental factors on the presence-absence of multispecies. Pertanika Journal of Science and Technology, 28(1), 245-261.

  • Parker, M. A. (1999). Mutualism in metapopulations of legumes and rhizobia. The American Naturalist, 153(S5), S48-S60. doi: 10.1086/303211.

  • Pascual-García, A., & Bastolla, U. (2017). Mutualism supports biodiversity when the direct competition is weak. Nature Communications, 8(1), 1-13. doi: 10.1038/ncomms14326

  • Poethke, H. J., Weisser, W. W., & Hovestadt, T. (2010). Predator‐induced dispersal and the evolution of conditional dispersal in correlated environments. The American Naturalist, 175(5), 577-586. doi: 10.1086/651595.

  • Quinn, T. P., Cunningham, C. J., & Wirsing, A. J. (2016). Diverse foraging opportunities drive the functional response of local and landscape-scale bear predation on Pacific salmon. Oecologia, 183(2), 415-429. doi: 10.1007/s00442-016-3782-3.

  • Rosenzweig, M. L. (1971). Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science, 171(3969), 385-387. doi: 10.1126/science.171.3969.385.

  • Rosenzweig, M. L., & MacArthur, R. H. (1963). Graphical representation and stability conditions of predator-prey interactions. The American Naturalist, 97(895), 209-223. doi: 10.1086/282272.

  • Rozhnova, G., Metcalf, C. J. E., & Grenfell, B. T. (2013). Characterizing the dynamics of rubella relative to measles: The role of stochasticity. Journal of The Royal Society Interface, 10(88), 20130643-20130643. doi: 10.1098/rsif.2013.0643.

  • Sala, E. (2006). Top predators provide insurance against climate change. Trends in Ecology and Evolution, 21(9), 479-480. doi: 10.1016/j.tree.2006.07.006.

  • Schmitt, R. J., & Holbrook, S. J. (2003). Mutualism can mediate competition and promote coexistence. Ecology Letters, 6(10), 898-902. doi: 10.1046/j.1461-0248.2003.00514.x.

  • Schmitz, O. J. (2006). Predators have large effects on ecosystem properties by changing plant diversity, not plant biomass. Ecology, 87(6), 1432-1437. doi: 10.1890/0012-9658(2006)87[1432:phleoe];2.

  • Soulé, M. E., & Terborgh, J. (1999). Conserving nature at regional and continental scales-a scientific program for North America. BioScience, 49(10), 809-817. doi: 10.2307/1313572.

  • Steiner, C. F., Stockwell, R. D., Kalaimani, V., & Aqel, Z. (2013). Population synchrony and stability in environmentally forced metacommunities. Oikos, 122(8), 1195-1206. doi: 10.1111/j.1600- 0706.2012.20936.x.

  • Swanson, A., Arnold, T., Kosmala, M., Forester, J., & Packer, C. (2016). In the absence of a “landscape of fear”: How lions, hyenas, and cheetahs coexist. Ecology and Evolution, 6(23), 8534-8545. doi: 10.1002/ece3.2569.

  • Valdovinos, F. S., Berlow, E. L., Moisset de Espanés, P., Ramos-Jiliberto, R., Vázquez, D. P., & Martinez, N. D. (2018). Species traits and network structure predict the success and impacts of pollinator invasions. Nature Communications, 9(1), 1-8. doi: 10.1038/s41467-018-04593-y.

  • Valdovinos, F. S., Brosi, B. J., Briggs, H. M., Moisset de Espanés, P., Ramos-Jiliberto, R., & Martinez, N. D. (2016). Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecology Letters, 19(10), 1277-1286. doi: 10.1111/ele.12664.

  • Vasseur, D. A., & Fox, J. W. (2009). Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature, 460(7258), 1007-1010. doi: 10.1038/nature08208.

  • Vogwill, T., Fenton, A., & Brockhurst, M. A. (2009). Dispersal and natural enemies interact to drive spatial synchrony and decrease stability in patchy populations. Ecology Letters, 12(11), 1194-1200. doi: 10.1111/j.1461-0248.2009.01374.x.

  • Wright, D. H. (1989). A simple, stable model of mutualism incorporating handling time. The American Naturalist, 134(4), 664-667. doi: 10.1086/285003.

  • Yaari, G., Ben-Zion, Y., Shnerb, N. M., & Vasseur, D. A. (2012). Consistent scaling of persistence time in metapopulations. Ecology, 93(5), 1214-1227. doi: 10.1890/11-1077.1.s.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Recent Articles