e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Al-Waily, M., Al-Shammari, M. A., & Jweeg, M. J. (2020). An analytical investigation of thermal buckling behavior of composite plates reinforced by carbon nano-particles. Engineering Journal, 24(3),11-21. https://doi.org/10.4186/ej.2020.24.3.11
Ambartsumyan, S. A., Ashton, J. E. (Ed), & Cheron, T. (Trans). (1970). Theory of Anisotropic Plates: Strength, Stability, and Vibration (Progress in Materials Science Series, Vol. 2). Technomic Publishing Company
Anderson, T. (2003). A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere. Composite Structures, 60(3), 265-274. https://doi.org/10.1016/S0263-8223(03)00013-8
Baferani, A. H., Saidi, A. R., & Ehteshami, H. (2011). Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Composite Structures, 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020
Bonnheim, N., Ansari, F., Regis, M., Bracco, P., & Pruitt, L. (2019). Effect of carbon fiber type on monotonic and fatigue properties of orthopedic grade PEEK. Journal of the mechanical behavior of biomedical materials, 90, 484-492. https://doi.org/10.1016/j.jmbbm.2018.10.033
Burlayenko, V. N., & Sadowski, T. (2020). Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements. Meccanica, 55(4), 815-832. https://doi.org/10.1007/s11012-019-01001-7
Chakraverty, S., & Pradhan, K. K. (2014). Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerospace Science and Technology, 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
Chi, S., & Chung, Y. (2006). Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis. International Journal of Solids and Structures, 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
Coskun, S., Kim, J., & Toutanji, H. (2019). Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory. Journal of Composites Science, 3(1), Article 15. https://doi.org/10.3390/jcs3010015
Cui, J., Zhou, T., Ye, R., Gaidai, O., Li, Z., & Tao, S. (2019). Three-dimensional vibration analysis of a functionally graded sandwich rectangular plate resting on an elastic foundation using a semi-analytical method. Materials, 12(20), Article 3401. https://doi.org/10.3390/ma12203401
Dang, Y. H., Li, Y. H., Chen, D., & Yang, J. (2018). Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Composites Part B: Engineering, 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009
Goel, M. D., Matsagar, V. A., Marburg, S., & Gupta, A. K. (2013). Comparative performance of stiffened sandwich foam panels under impulsive loading. Journal of performance of constructed facilities, 27(5), 540-549. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000340
Hadji, L., Atmane, H. A., Tounsi, A., Mechab, I., & Bedia, E. A. (2011). Free vibration of functionally graded sandwich plates using four-variable refined plate theory. Applied Mathematics and Mechanics, 32, 925-942. https://doi.org/10.1007/s10483-011-1470-9
Hayat, S., & Meriem, S. (2019). Vibration analysis of functionally graded plates with porosity composed of a mixture of Aluminium (Al) and Alumina (Al2O3) embedded in an elastic medium. Frattura ed Integrità Strutturale, 13(50), 286-299. https://doi.org/10.3221/IGF-ESIS.50.24
Kapuria, S., Bhattacharyya, M., & Kumar, A. N. (2008). Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation. Composite Structures, 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
Kiani, Y., & Eslami, M. R. (2012). Thermal buckling and post-buckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation. Archive of Applied Mechanics, 82, 891-905. https://doi.org/10.1007/s00419-011-0599-8
Kiani, Y., Bagherizadeh, E., & Eslami, M. R. (2011). Thermal and mechanical buckling of sandwich plates with FGM face sheets resting on the Pasternak elastic foundation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(1), 32-41. https://doi.org/10.1177/0954406211413657
Kim, J., Żur, K. K., & Reddy, J. N. (2019). Bending, free vibration and buckling of modified couples stress-based functionally graded porous micro-plates. Composite Structures, 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023
Kumar, V., Singh, S. J., Saran, V. H., & Harsha, S. P. (2021). Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak’s foundation. European Journal of Mechanics-A/Solids, 85, Article 104124. https://doi.org/10.1016/j.euromechsol.2020.104124
Lashkari, M. J., & Rahmani, O. (2016). Bending behavior of sandwich structures with flexible functionally graded core based on high-order sandwich panel theory. Meccanica, 51(5), 1093-1112. https://doi.org/10.1007/s11012-015-0263-4
Latifi, M., Farhatnia, F., & Kadkhodaei, M. (2013). Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion. European Journal of Mechanics - A/Solids, 41, 16-27. https://doi.org/10.1016/j.euromechsol.2013.01.008
Leissa, A. W. (1969). Vibration of plates (Vol. 160). Scientific and Technical Information Division, National Aeronautics and Space Administration.
Liu, Y., Hu, Y., Liu, T., Ding, J. L., & Zhong, W. H. (2015). Mechanical behavior of high density polyethylene and its carbon nanocomposites under quasi-static and dynamic compressive and tensile loadings. Polymer Testing, 41, 106-116. https://doi.org/10.1016/j.polymertesting.2014.11.003
Meiche, N. E., Tounsi, A., Ziane, N., Mechab, I., & Bedia, E. A. (2011). A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. International Journal of Mechanical Sciences, 53(10), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
Merdaci, S. (2019). Free vibration analysis of composite material plates case of a typical functionally graded FG plates ceramic/metal with porosities. Nano Hybrids and Composites, 25, 69-83. https://doi.org/10.4028/www.scientific.net/NHC.25.69
Meziane, M. A. A., Abdelaziz, H. H., & Tounsi, A. (2014). An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. Journal of Sandwich Structures and Materials, 16(3), 293-318. https://doi.org/10.1177/1099636214526852
Muc, A., & Flis, J. (2021). Flutter characteristics and free vibrations of rectangular functionally graded porous plates. Composite Structures, 261, 113301. https://doi.org/10.1016/j.compstruct.2020.113301
Najim, A. S., & Adwaa, M. (2014). Studying mechanical properties specially fatigue behavior of (polyether ether ketone)/glass fiber composites in aerospace applications. In Applied Mechanics and Materials (Vol. 666, pp. 8-16). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.666.8
Natarajan, S., & Manickam, G. (2012). Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elements in Analysis and Design, 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006
Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R. M. N., & Soares, C. M. M. (2013). Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering, 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089
Nguyen, N. V., Nguyen, H. X., Lee, S., & Xuan, H. N. (2018). Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates. Advances in Engineering Software, 126, 110-126. https://doi.org/10.1016/j.advengsoft.2018.11.005
Rao, S. S. (2004). The finite element method in engineering. Elsevier.
Reddy, J. N. (1993). An introduction to the finite element method. McGraw-Hill, Inc.
Rezaei, A. S., & Said, A. R. (2015). Exact solution for free vibration of thick rectangular plates made of porous materials. Composite Structures, 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125
Sadiq, S. E., Jweeg, M. J., & Bakhy, S. H. (2020). The effects of honeycomb parameters on transient response of an aircraft sandwich panel structure. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 2, p. 022126). IOP Publishing.
Singh, S. A., & Harsha, S. P. (2020). Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov’s method: A semi-analytical approach. Thin-Walled Structures, 150, Article 106668. https://doi.org/10.1016/j.tws.2020.106668
Thai, H. T., Nguyen, T. K., Vo, T. P., & Lee, J. (2013). Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. European Journal of Mechanics-A/Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008
Tossapanon, P., & Wattanasakulpong, N. (2020). Flexural vibration analysis of functionally graded sandwich plates resting on elastic foundation with arbitrary boundary conditions: Chebyshev collocation technique. Journal of Sandwich Structures and Materials, 22(2), 156-189. https://doi.org/10.1177/1099636217736003
Wadee, M. A. (2001). Shear Deformable Beams and Plates: Relationships with Classical Solutions-CM Wang, JN Reddy and KH Lee, Elsevier, 2000, pp. 312,@ $69.30, ISBN 0080437842. Engineering Structures, 7(23), 873-874.
Wang, Y. Q., & Zu, J. W. (2017). Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerospace Science and Technology, (69), 550-562. https://doi.org/10.1016/j.ast.2017.07.023
Wattanasakulpong, N., & Chaikittiratana, A. (2015). Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica, 50(5), 1331-1342. https://doi.org/10.1007/s11012-014-0094-8
Wattanasakulponga, N., & Ungbhakorn, V. (2014). Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology, 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
Zhang, X. Y., Fang, G., Leeflang, S., Zadpoor, A. A., & Zhou, J. (2019). Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomaterialia, 84, 437-452. https://doi.org/10.1016/j.actbio.2018.12.013
Zhang, Y., & Wang, J. (2017). Fabrication of functionally graded porous polymer structures using thermal bonding lamination techniques. Procedia Manufacturing, 10, 866-875. https://doi.org/10.1016/j.promfg.2017.07.073
Zhao, J., Wang, Q., Deng, X., Choe, K., Zhong, R., & Shuai, C. (2019). Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions. Composites Part B: Engineering, 168, 106-120. https://doi.org/10.1016/j.compositesb.2018.12.044
ISSN 1511-3701
e-ISSN 2231-8542