PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abo-bakr, R. M., Abo-bakr, H. M., Mohamed, S. A., & Eltaher, M. A. (2021). Optimal weight for buckling of FG beam under variable axial load using Pareto optimality. Composite Structures, 258, Article 113193. https://doi.org/10.1016/j.compstruct.2020.113193

  • Al-Waily, M., Al-Shammari, M. A., & Jweeg, M. J. (2020). An analytical investigation of thermal buckling behavior of composite plates reinforced by carbon nano-particles. Engineering Journal, 24(3), 11-21. https://doi.org/10.4186/ej.2020.24.3.11

  • Arefi, M., & Najafitabar, F. (2021). Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method. Thin-Walled Structures, 158, Article 107200. https://doi.org/10.1016/j.tws.2020.107200

  • Arndt, K. F., & Lechner, M. D. (2014). Polymer solids and polymer melts–mechanical and thermomechanical properties of polymers. Springer. https://doi.org/10.1007/978-3-642-55166-6

  • Baferani, H. A., Saidi, A. R., & Ehteshami, H. (2011). Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Composite Structures, 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020

  • Bai, L., Yi, C., Chen, X., Sun, Y., & Zhang, J. (2019). Effective design of the graded strut of BCC lattice structure for improving mechanical properties. Materials, 12(13), Article 2192. https://doi.org/10.3390/ma12132192

  • Balakrishna, A., Padmanav, D., & Singh, N. B., (2020). Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory. Composite Structures, 251, Article 112597. https://doi.org/10.1016/j.compstruct.2020.112597

  • Bassiouny, S., Jinghua, J., Reham, F., Tareq, A., Qiong, X., Lisha, W., Dan, S., & Aibin, M. (2020). 30 years of functionally graded materials: An overview of manufacturing methods, applications, and future challenges. Composites Part B: Engineering, 201, Article 108376. https://doi.org/10.1016/j.compositesb.2020.108376

  • Chen, D., Yang, J., & Kitipornchai, S. (2019). Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method. Archives of Civil and Mechanical Engineering, 19(1), 157-170. https://doi.org/10.1016/j.acme.2018.09.004

  • Chen, Z., Li, J., Sun, L., & Li, L. (2019). Flexural buckling of sandwich beams with thermal-induced non-uniform sectional properties. Journal of Building Engineering, 25, Article 100782. https://doi.org/10.1016/j.jobe.2019.100782

  • Cui, J., Zhou, T., Ye, R., Gaidai, O., Li, Z., & Tao, S. (2019). Three-dimensional vibration analysis of a functionally graded sandwich rectangular plate resting on an elastic foundation using a semi-analytical method. Materials, 12(20), Article 3401. https://doi.org/10.3390/ma12203401

  • Emad, K. N., Al-Waily, M., & Sadeq, H. B. (In Press). Optimization design of vibration characterizations for functionally graded porous metal sandwich plate structure. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.03.235

  • Emad, K. N., Al-Waily, M., & Sadeq, H. B. (2021a). A review of the recent research on the experimental tests of functionally graded sandwich panels. Journal of Mechanical Engineering Research and Developments, 44( 3), 420-441.

  • Emad, K. N., Al-Waily, M., & Sadeq, H., B. (2021b). A critical review of recent research of free vibration and stability of functionally graded materials of sandwich plate. IOP Conference Series: Materials Science and Engineering, 1094, Article 012081. https://doi.org/10.1088/1757-899X/1094/1/012081

  • Hessameddin, Y., & Farid T. (2020). Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Composite Structures, 252, Article 112700. https://doi.org/10.1016/j.compstruct.2020.112700

  • Jin, X. S., & Masatoshi S. (2015). Interface shape optimization of designing functionally graded sandwich structures. Composite Structures, 125, 88-95. https://doi.org/10.1016/j.compstruct.2015.01.045

  • Krzysztof, M., & Ewa, M., (2021). Generalization of a sandwich structure model: Analytical studies of bending and buckling problems of rectangular plates. Composite Structures, 255, Article 112944. https://doi.org/10.1016/j.compstruct.2020.112944

  • Kumar, V., Singh, S. J., Saran, V. H., & Harsha, S. P. (2021). Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak’s foundation. European Journal of Mechanics - A/Solids, 85, Article 104124. https://doi.org/10.1016/j.euromechsol.2020.104124

  • Latifi, M., Farhatnia, F., & Kadkhodaei, M. (2013). Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion. European Journal of Mechanics - A/Solids, 41, 16-27. https://doi.org/10.1016/j.euromechsol.2013.01.008

  • Lin, C., Bai, J., & Albert, C. (2019). Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints. Computer Methods in Applied Mechanics and Engineering, 344, 334-359. https://doi.org/10.1016/j.cma.2018.10.010

  • Merdaci, S., Belmahi, S., Belghoul, H., & Hadj, M. A. (2019). Free vibration analysis of functionally graded plates FG with porosities. International Journal of Engineering & Technical Research, 8(3), 143-147. https://doi.org/10.17577/IJERTV8IS030098

  • Michele, B. (2020). Buckling analysis of three-phase CNT/polymer/fiber functionally graded orthotropic plates: Influence of the non-uniform distribution of the oriented fibers on the critical load. Engineering Structures, 223, Article 111176. https://doi.org/10.1016/j.engstruct.2020.111176

  • Mine, U. U., & Uğur, G. (2020). Buckling of functional graded polymeric sandwich panel under different load cases. Composite Structures, 21, 182-196. https://doi.org/10.1016/j.compstruct.2014.11.012

  • Moleiro, F., Madeira, J. F. A., Carrera, E., & Reddy, J. N. (2020). Design optimization of functionally graded plates under thermo-mechanical loadings to minimize stress, deformation and mass. Composite Structures, 245, Article 112360. https://doi.org/10.1016/j.compstruct.2020.112360

  • Mrinal, G., & Manish, C. (2021). Optimization of functionally graded material under thermal stresses. Materials Today: Proceedings, 44(1), 1520-1523. https://doi.org/10.1016/j.matpr.2020.11.733

  • Nguyen, N. V., Nguyen, X. H., Lee, D., & Lee, J. (2020). A novel computational approach to functionally graded porous plates with graphene platelets reinforcement. Thin-Walled Structures, 150, Article 106684. https://doi.org/10.1016/j.tws.2020.106684

  • Nikbakht, S., Kamarian, S., & Shakeri, M. (2019). A review on optimization of composite structures Part II: Functionally graded materials, Composite Structures, 214, 83-102. https://doi.org/10.1016/j.compstruct.2019.01.105

  • Nuttawit, W., & Arisara, C. (2015). Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory, Chebyshev collocation method. Meccanica, 50, 1331-1342. https://doi.org/10.1007/s11012-014-0094-8.

  • Phi, L. T. M., Nguyen, T. T., & Lee, J. (2021). Buckling analysis of open-section beams with thin-walled functionally graded materials along the contour direction. European Journal of Mechanics-A/Solids, 88, Article 104217. https://doi.org/10.1016/j.euromechsol.2021.104217

  • Sadiq, S. E., Bakhy, S. H., & Muhsin, J. J. (2021). Optimum vibration characteristics for honeycomb sandwich panel used in aircraft structure. Journal of Engineering Science and Technology, 16(2), 1463-1479.

  • Singh, S. J., & Harsha, S. P. (2020). Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov’s method: a semi-analytical approach. Thin-Walled Structures, 150, Article 106668. https://doi.org/10.1016/j.tws.2020.106668

  • Thang, T. P., Nguyen, T. T., & Lee, J. (2020). Shape and material optimization for buckling behavior of functionally graded toroidal shells. Thin-Walled Structures, 157, Article 107129. https://doi.org/10.1016/j.tws.2020.107129

  • Vuong, N. V. D., & Chin, H. L. (2018). Numerical investigation on post-buckling behavior of FGM sandwich plates subjected to in-plane mechanical compression. Ocean Engineering, 170, 20-42. https://doi.org/10.1016/j.oceaneng.2018.10.007

  • Vyacheslav, N. B., & Tomasz, S. (2020). Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements. Meccanica, 55, 815-832. https://doi.org/10.1007/s11012-019-01001-7

  • Wang, C., Yu, T., Shao, G., & Bui, T. Q. (2021). Multi-objective isogeometric integrated optimization for shape control of piezoelectric functionally graded plates. Computer Methods in Applied Mechanics and Engineering, 377, Article 113698. https://doi.org/10.1016/j.cma.2021.113698

  • Wang, J. F., Cao, S. H., & Zhang, W. (2021). Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. European Journal of Mechanics - A/Solids, 85, Article 104105. https://doi.org/10.1016/j.euromechsol.2020.104105

  • Yassir, S., Khadija, M., Oussama, B., & Hassan, R. (2021) Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the Asymptotic Numerical Method. Structures, 31, 1031-1040. https://doi.org/10.1016/j.istruc.2021.01.100

  • Yi, B., Zhou, Y., Yoon, G. H., & Saitou, K. (2019). Topology optimization of functionally-graded lattice structures with buckling constraints. Computer Methods in Applied Mechanics and Engineering, 354, 593-619. https://doi.org/10.1016/j.cma.2019.05.055

  • Zhao, J., Zhang, M., Zhu, Y., Li, X., Wang, L., & Hu, J. (2019). A novel optimization design method of additive manufacturing-oriented porous structures and experimental validation. Materials & Design, 163, Article 107550. https://doi.org/10.1016/j.matdes.2018.107550

  • Zhu, F., Wang, Z., Lu, G., & Zhao, L. (2009). Analytical investigation and optimal design of sandwich panels subjected to shock loading. Materials & Design, 30(1), 91-100. https://doi.org/10.1016/j.matdes.2008.04.027

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles