e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Al-Baghdadi, M. (2009). A CFD study of hygro–thermal stresses distribution in PEM fuel cell during regular cell operation. Renewable Energy, 34(3), 674-682. https://doi.org/10.1016/j.renene.2008.05.023
Al-Baghdadi, M. (2010). A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped ambient air-breathing PEM micro fuel cell. HKIE Transactions, 17(2), 1-8. https://doi.org/10.1080/1023697X.2010.10668189
Al-Baghdadi, M., Noor, Z., Zeiny, A., Burns, A., & Wen, D. (2020). CFD analysis of a nanofluid-based microchannel heat sink. Thermal Science and Engineering Progress, 20, Article 100685. https://doi.org/10.1016/j.tsep.2020.100685
Alhattab, H. A., Al-Baghdadi, M., Hashim, R., & Ali, A. (2016). Design of micro heat sink for power transistor by using CFD. In Al-Sadiq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA) (pp. 268-272). IEEE Publishing. https://doi.org/10.1109/AIC-MITCSA.2016.7759948
Ali, S., Ahmad, F., Yusoff, P., Muhamad, N., Oñate, E., Raza, M., & Malik, K. (2021). A review of graphene reinforced Cu matrix composites for thermal management of smart electronics. Composites Part A: Applied Science and Manufacturing, 144, Article 106357. https://doi.org/10.1016/j.compositesa.2021.106357
Brahim, T., & Jemni, A. (2021). CFD analysis of hotspots copper metal foam flat heat pipe for electronic cooling applications. International Journal of Thermal Sciences, 159, Article 106583. https://doi.org/10.1016/j.ijthermalsci.2020.106583
Çengel, Y. A. (2007). Heat and mass transfer: A practical approach. McGraw-Hill Higher Education.
Cheng, C., Chang, P., Li, H., & Hsu, F. (2020). Design of a single-phase immersion cooling system through experimental and numerical analysis. International Journal of Heat and Mass Transfer, 160, Article 120203. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120203
Chu, W., Tsai, M., Jan, S., Huang, H., & Wang, C. (2020). CFD analysis and experimental verification on a new type of air-cooled heat sink for reducing maximum junction temperature. International Journal of Heat and Mass Transfer, 148, Article 119094. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119094
Fan, D., Jin, M., Wang, J., Liu, J., & Li, Q. (2020). Enhanced heat dissipation in graphite-silver-polyimide structure for electronic cooling. Applied Thermal Engineering, 168, Article 114676. https://doi.org/10.1016/j.applthermaleng.2019.114676
Galins, J., Laizans, A., & Galins, A. (2019). Review of cooling solutions for compact electronic devices. Research for Rural Development, 1, 201-208. https://doi.org/10.22616/rrd.25.2019.030
Gan, J., Yu, H., Tan, M., Soh, A., Wu, H., & Hung, Y. (2020). Performance enhancement of graphene-coated micro heat pipes for light-emitting diode cooling. International Journal of Heat and Mass Transfer, 154, Article 119687. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119687
Ghyadh, N., Ahmed, S., & Al-Baghdadi, M. (2021). Enhancement of forced convection heat transfer from cylindrical perforated fins heat sink - CFD Study. Journal of Mechanical Engineering Research and Developments, 44(3), 407-419.
He, Z., Yan, Y., & Zhang, Z. (2021). Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy, 216, Article 119223. https://doi.org/10.1016/j.energy.2020.119223
Hsieh, C., Chen, Y., Lee, C., Chiang, Y., Hsieh, K., & Wu, H. (2017). Heat transport enhancement of heat sinks using Cu-coated graphene composites. Materials Chemistry and Physics, 197, 105-112. https://doi.org/10.1016/j.matchemphys.2017.05.012
Jaafar, A. A., Al-Abassi, S. A. W., Alhattab, H. A., Albaghdad, M. A., Mosa, A. A., Al-Musawi, H. K., & Gneem, L. M. (2020). Improvement of heat sink performance by using graphene nanosheets coated by chemical spray method. In IOP Conference Series: Materials Science and Engineering (Vol. 811, No. 1, p. 012027). IOP Publishing. https://doi.org/10.1088/1757-899X/811/1/012027
Moffat, R. J. (1985). Using uncertainty analysis in the planning of an experiment. Journal of Fluids Engineering, 107, 173-178. https://doi.org/10.1115/1.3242452
Rohachev, V. A., Terekh, O. M., Baranyuk, A. V., Nikolaenko, Y. E., Zhukova, Y. V., & Rudenko, A. I. (2020). Heataerodynamic efficiency of small size heat transfer surfaces for cooling thermally loaded electronic components. Thermal Science and Engineering Progress, 20, Article 100726, https://doi.org/10.1016/j.tsep.2020.100726.
Wong, R., Antoniou, A., & Smet, V. (2021). Copper-graphene foams: A new high-performance material system for advanced package-integrated cooling technologies. In 2021 IEEE 71st Electronic Components and Technology Conference (ECTC) (pp. 1945-1951). IEEE Publishing. https://doi.org/10.1109/ectc32696.2021.00307
Xie, L., Yuan, X., & Wang, W. (2021). Thermal-flow network modeling for virtual prototyping of power electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(8), 1282-1291. https://doi.org/10.1109/TCPMT.2020.3009156
Yang, D., Yao, Q., Jia, M., Wang, J., Zhang, L., Xu, Y., & Qu, X. (2021). Application analysis of efficient heat dissipation of electronic equipment based on flexible nanocomposites. Energy and Built Environment, 2(2), 157-166. https://doi.org/10.1016/j.enbenv.2020.07.008
Zhuang, D., Yang, Y., Ding, G., Du, X., & Hu, Z. (2020). Optimization of microchannel heat sink with rhombus fractal-like units for electronic chip cooling. International Journal of Refrigeration, 116, 108-118. https://doi.org/10.1016/j.ijrefrig.2020.03.026
Zu, H., Dai, W., Li, Y., Li, K., & Li, J. (2021). Analysis of enhanced heat transfer on a passive heat sink with high-emissivity coating. International Journal of Thermal Sciences, 166, Article 106971. https://doi.org/10.1016/j.ijthermalsci.2021.106971
ISSN 1511-3701
e-ISSN 2231-8542