PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abdullah, Sianipar, R. N. R., Ariyani, D., & Nata, I. F. (2017). Conversion of palm oil sludge to biodiesel using alum and KOH as catalysts. Sustainable Environment Research, 27(6), 291-295. https://doi.org/10.1016/j.serj.2017.07.002

  • Abdullah, S. H. Y. S., Hanapi, N. H. M., Azid, A., Umar, R., Juahir, H., Khatoon, H., & Endut, A. (2017). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renewable and Sustainable Energy Reviews, 70, 1040-1051. https://doi.org/10.1016/j.rser.2016.12.008

  • ALOthman, Z. A. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials,5(12), 2874-2902. https://doi.org/10.3390/ma5122874

  • Alvarez, J., Hooshdaran, B., Cortazar, M., Amutio, M., Lopez, G., Freire, F. B., Haghshenasfard, M., Hosseini, S. H., & Olazar, M. (2018). Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. Fuel, 224, 111-120. https://doi.org/10.1016/j.fuel.2018.03.028

  • Ardi, M. S., Aroua, M. K., & Hashim, N. A. (2015). Progress, prospect and challenges in glycerol purification process: A review. Renewable and Sustainable Energy Reviews, 42, 1164-1173. https://doi.org/10.1016/j.rser.2014.10.091

  • Arsyad, A., Sulistyo, H., & Sarto. (2015). Kinetics of esterification reaction of glycerol monoacetin from glycerol by-products of biodiesel and acetic acid industry with passive monoplus s-100 catalyst. Process Engineering Journal, 9(2), 51-57

  • Babayemi, A. K., Onukwuli, O. D., Eluno, E. E., & Otolorin, J. A. (2021). Optimizing process parameters of palm oil bleaching on locally prepared animal bone-based activated carbon using response surface methodology. Environmental Quality Management, 30(3), 43-51. https://doi.org/10.1002/tqem.21729

  • Balajii, M., & Niju, S. (2019). A novel biobased heterogeneous catalyst derived from Musa acuminata peduncle for biodiesel production - Process optimization using central composite design. Energy Conversion and Management, 189, 118-131. https://doi.org/10.1016/j.enconman.2019.03.085

  • Betiku, E., & Ajala, S. O. (2014). Modeling and optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peels as heterogeneous base catalyst: A case of artificial neural network vs. response surface methodology. Industrial Crops and Products, 53, 314-322. https://doi.org/10.1016/j.indcrop.2013.12.046

  • Betiku, E., Akintunde, A. M., & Ojumu, T. V. (2016). Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon’s plume (Bauhinia monandra) seed oil: A process parameters optimization study. Energy, 103, 797-806. https://doi.org/10.1016/j.energy.2016.02.138

  • Betiku, E., Etim, A. O., Pereao, O., & Ojumu, T. V. (2017). Two-step conversion of neem (Azadirachta indica) seed oil into fatty methyl esters using a heterogeneous biomass-based catalyst: An example of cocoa pod husk. Energy & Fuels, 31(6), 6182-6193. https://doi.org/10.1021/acs.energyfuels.7b00604

  • Betiku, E., Okeleye, A. A., Ishola, N. B., Osunleke, A. S., & Ojumu, T. V. (2019). Development of a novel mesoporous biocatalyst derived from kola nut pod husk for conversion of kariya seed oil to methyl esters: A case of synthesis, modeling and optimization studies. Catalysis Letters, 149(7), 1772-1787. https://doi.org/10.1007/s10562-019-02788-6

  • Bravo-Suárez, J. J., Chaudhari, R. V., & Subramaniam, B. (2013). Design of heterogeneous catalysts for fuels and chemicals processing: An overview. In Novel Materials for Catalysis and Fuels Processing (pp. 3-68). American Chemical Society. https://doi.org/10.1021/bk-2013-1132.ch001

  • Buchori, L., Widayat, W., Muraza, O., Amali, M. I., Maulida, R. W., & Prameswari, J. (2020). Effect of temperature and concentration of zeolite catalysts of geothermal solid waste in biodiesel production from used cooking oil by esterification–transesterification process. Processes, 8(12), Article 1629. https://doi.org/10.3390/pr8121629

  • Caballero, K. V., Guerrero-Amaya, H., & Baldovino-Medrano, V. G. (2019). Revisiting glycerol esterification with acetic acid over amberlyst-35 via statistically designed experiments: Overcoming transport limitations. Chemical Engineering Science, 207, 91-104. https://doi.org/10.1016/j.ces.2019.06.003

  • Campos-Vega, R., Nieto-Figueroa, K. H., & Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science & Technology, 81, 172-184. https://doi.org/10.1016/j.tifs.2018.09.022

  • Chakraborty, R., Chatterjee, S., Mukhopadhyay, P., & Barman, S. (2016). Progresses in waste biomass derived catalyst for production of biodiesel and bioethanol: A review. Procedia Environmental Sciences, 35, 546-554. https://doi.org/https://doi.org/10.1016/j.proenv.2016.07.039

  • Chamack, M., Mahjoub, A. R., & Akbari, A. (2018). Zirconium-modified mesoporous silica as an efficient catalyst for the production of fuel additives from glycerol. Catalysis Communications, 110, 1-4. https://doi.org/10.1016/j.catcom.2018.02.021

  • Chen, G. Y., Shan, R., Shi, J. F., & Yan, B. B. (2015). Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Processing Technology, 133, 8-13. https://doi.org/10.1016/j.fuproc.2015.01.005

  • Chong, C. C., Aqsha, A., Ayoub, M., Sajid, M., Abdullah, A. Z., Yusup, S., & Abdullah, B. (2020). A review over the role of catalysts for selective short-chain polyglycerol production from biodiesel derived waste glycerol. Environmental Technology & Innovation, 19, Article 100859. https://doi.org/10.1016/j.eti.2020.100859

  • Chouhan, A. P. S., & Sarma, A. K. (2013). Biodiesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as heterogeneous catalyst. Biomass and Bioenergy, 55, 386-389. https://doi.org/10.1016/j.biombioe.2013.02.009

  • Ciriminna, R., Pina, C. D., Rossi, M., & Pagliaro, M. (2014). Understanding the glycerol market. European Journal of Lipid Science and Technology, 116(10), 1432-1439. https://doi.org/10.1002/ejlt.201400229

  • Daud, N. M., Abdullah, S. R. S., Hasan, H. A., & Yaakob, Z. (2015). Production of biodiesel and its wastewater treatment technologies: A review. Process Safety and Environmental Protection, 94, 487-508. https://doi.org/10.1016/j.psep.2014.10.009

  • de Abreu Dessimoni, A. L., de Oliveira Pereira, L., Penido, E. S., Veiga, T. R. L. A., de Barros Fernandes, R. V., Teixeira, M. L., de Resende Bonésio, M., & Bianchi, M. L. (2018). Characterization of catalysts for glycerol ester production with various acetylating agents. Analytical Letters, 51(11), 1705-1717. https://doi.org/10.1080/00032719.2017.1385620

  • de la Calle, C., Fraile, J. M., García-Bordejé, E., Pires, E., & Roldán, L. (2015). Biobased catalyst in biorefinery processes: Sulphonated hydrothermal carbon for glycerol esterification. Catalysis Science & Technology, 5(5), 2897-2903. https://doi.org/10.1039/C5CY00059A

  • Dill, L. P., Kochepka, D. M., Melinski, A., Wypych, F., & Cordeiro, C. S. (2019). Microwave-irradiated acetylation of glycerol catalyzed by acid activated clays. Reaction Kinetics, Mechanisms and Catalysis, 127(2), 991-1004. https://doi.org/10.1007/s11144-019-01594-w

  • Dosuna-Rodríguez, I., & Gaigneaux, E. M. (2012). Glycerol acetylation catalysed by ion exchange resins. Catalysis Today, 195(1), 14-21. https://doi.org/10.1016/j.cattod.2012.04.031

  • Domingos, A. M., Pitt, F. D., & Barros, A. A. C. (2019). Purification of residual glycerol recovered from biodiesel production. South African Journal of Chemical Engineering, 29(1), 42-51. https://doi.org/10.1016/j.sajce.2019.06.001

  • Endut, A., Abdullah, S. H. Y. S., Hanapi, N. H. M., Hamid, S. H. A., Lananan, F., Kamarudin, M. K. A., Umar, R., Juahir, H., & Khatoon, H. (2017). Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology. International Biodeterioration & Biodegradation, 124, 250-257. https://doi.org/10.1016/j.ibiod.2017.06.008

  • Etim, A. O., Musonge, P., & Eloka-Eboka, A. C. (2020). Effectiveness of biogenic waste-derived heterogeneous catalysts and feedstock hybridization techniques in biodiesel production. Biofuels, Bioproducts and Biorefining, 14(3), 620-649. https://doi.org/10.1002/bbb.2094

  • Falowo, O. A., Oloko-Oba, M. I., & Betiku, E. (2019). Biodiesel production intensification via microwave irradiation-assisted transesterification of oil blend using nanoparticles from elephant-ear tree pod husk as a base heterogeneous catalyst. Chemical Engineering and Processing - Process Intensification, 140, 157-170. https://doi.org/10.1016/j.cep.2019.04.010

  • Ferreira, P., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2011). Acetylation of glycerol over heteropolyacids supported on activated carbon. Catalysis Communications, 12(7), 573-576. https://doi.org/10.1016/j.catcom.2010.11.022

  • Gohain, M., Devi, A., & Deka, D. (2017). Musa balbisiana Colla peel as highly effective renewable heterogeneous base catalyst for biodiesel production. Industrial Crops and Products, 109, 8-18. https://doi.org/10.1016/j.indcrop.2017.08.006

  • Gorji, Y. M., & Ghaziaskar, H. S. (2016). Optimization of solketalacetin synthesis as a green fuel additive from ketalization of monoacetin with acetone. Industrial & Engineering Chemistry Research, 55(25), 6904-6910. https://doi.org/10.1021/acs.iecr.6b00929

  • Güleç, F., Sher, F., & Karaduman, A. (2019). Catalytic performance of Cu-and Zr-modified beta zeolite catalysts in the methylation of 2-methylnaphthalene. Petroleum Science, 16(1), 161-172.

  • Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., & Zhang, H. (2011), Graphene-based materials: Synthesis, characterization, properties, and applications. Small, 7, 1876-1902. https://doi.org/10.1002/smll.201002009

  • Hemalatha, R., & Anbuselvi, S. (2013). Physicohemical constituents of pineapple pulp and waste. Journal of Chemical and Pharmaceutical Research, 5(2), 240-242.

  • Herrada-Vidales, J. A., García-González, J. M., Martínez-Palou, R., & Guzmán-Pantoja, J. (2020). Integral process for obtaining acetins from crude glycerol and their effect on the octane index. Chemical Engineering Communications, 207(2), 231-241. https://doi.org/10.1080/00986445.2019.1578758

  • Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios. In Proceedings of the Annual Hawaii International Conference on System Sciences (pp. 3928-3937). IEEE Publishing. https://doi.org/10.1109/HICSS.2016.488

  • Heryani, H., & Yanti, N. R. (2020). Potentials of biomass waste sources for heterogeneous catalyst production. In IOP Conference Series: Earth and Environmental Science (Vol. 472, No. 1, p. 012035). IOP Publishing. https://doi.org/10.1088/1755-1315/472/1/012035

  • Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., Asrofi, M., Atikah, M. S. N., Huzaifah, M. R. M., Radzi, A. M., Azammi, A. M. N., Shaharuzaman, M. A., Nurazzi, N. M., Syafri, E., Sari, N. H., Norrrahim, M. N. F., & Jumaidin, R. (2019). Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. Journal of Materials Research and Technology, 8(3), 2753-2766. https://doi.org/10.1016/j.jmrt.2019.04.011

  • Kale, S., Umbarkar, S. B., Dongare, M. K., Eckelt, R., Armbruster, U., & Martin, A. (2015). Selective formation of triacetin by glycerol acetylation using acidic ion-exchange resins as catalyst and toluene as an entrainer. Applied Catalysis A: General, 490, 10-16. https://doi.org/10.1016/j.apcata.2014.10.059

  • Khan, H. M., Iqbal, T., Yasin, S., Ali, C. H., Abbas, M. M., Jamil, M. A., Hussain, A., M. Soudagar, M. E., & Rahman, M. M. (2021). Application of agricultural waste as heterogeneous catalysts for biodiesel production. Catalysts, 11(10), Article 1215. https://doi.org/10.3390/catal11101215

  • Khayoon, M. S., & Hameed, B. H. (2011). Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresource Technology, 102(19), 9229-9235. https://doi.org/10.1016/j.biortech.2011.07.035

  • Lathiya, D. R., Bhatt, D. V., & Maheria, K. C. (2018). Synthesis of sulfonated carbon catalyst of waste orange peel for cost effective biodiesel production. Bioresource Technology Reports, 2, 69-76. https://doi.org/10.1016/j.biteb.2018.04.007

  • Mahmudul, H. M., Hagos, F. Y., Mamat, R., Adam, A. A., Ishak, W. F. W., & Alenezi, R. (2017). Production, characterization and performance of biodiesel as an alternative fuel in diesel engines - A review. Renewable and Sustainable Energy Reviews, 72, 497-509. https://doi.org/10.1016/j.rser.2017.01.001

  • Malaika, A., & Kozłowski, M. (2019). Glycerol conversion towards valuable fuel blending compounds with the assistance of SO3H-functionalized carbon xerogels and spheres. Fuel Processing Technology, 184, 19-26. https://doi.org/10.1016/j.fuproc.2018.11.006

  • Marshall, R. E., & Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4), 988-1003. https://doi.org/10.1016/j.wasman.2012.12.023

  • Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R. S., Batalha, M. O., & da Silva César, A. (2018). Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 88, 109-122. https://doi.org/10.1016/j.rser.2018.02.019

  • Mendonça, I. M., Paes, O. A. R. L., Maia, P. J. S., Souza, M. P., Almeida, R. A., Silva, C. C., Duvoisin, S., & de Freitas, F. A. (2019). New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study. Renewable Energy, 130, 103-110. https://doi.org/10.1016/j.renene.2018.06.059

  • Moni, M. N. Z., Sulaiman, S. A., Raja, Y. S., Karunamurthy, K., Inayat, M., & Bou-Rabee, M. A. (2016). Investigation of the relationship between moisture content and density of selected Malaysian biomass. Journal of Mechanical Engineering and Sciences, 10(2), 2112-2126. https://doi.org/10.15282/jmes.10.2.2016.15.0199

  • Mufrodi, Z., Astuti, E., Aktawan, A., & Purwono, S. (2018). The effect of recycle stream on the selectivity and yield of the formation of triacetin from glycerol. In IOP Conference Series: Earth and Environmental Science (Vol. 175, No. 1, p. 012013). IOP Publishing. https://doi.org/10.1088/1755-1315/175/1/012013

  • Nda-Umar, U. I., Ramli, I., Taufiq-Yap, Y. H., & Muhamad, E. N. (2019). An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts, 9(1), Article 15. https://doi.org/10.3390/catal9010015

  • Ofori-Boateng, C., & Lee, K. T. (2013). The potential of using cocoa pod husks as green solid base catalysts for the transesterification of soybean oil into biodiesel: Effects of biodiesel on engine performance. Chemical Engineering Journal, 220, 395-401. https://doi.org/10.1016/j.cej.2013.01.046

  • Ogungbenro, A. E., Quang, D. V., Al-Ali, K. A., Vega, L. F., & Abu-Zahra, M. R. M. (2018). Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. Journal of Environmental Chemical Engineering, 6(4), 4245-4252. https://doi.org/10.1016/j.jece.2018.06.030

  • Oliverio, M., Costanzo, P., Nardi, M., Calandruccio, C., Salerno, R., & Procopio, A. (2016). Tunable microwave-assisted method for the solvent-free and catalyst-free peracetylation of natural products. Beilstein Journal of Organic Chemistry, 12(1), 2222-2233.

  • Onoji, S. E., Iyuke, S. E., Igbafe, A. I., & Nkazi, D. B. (2016). Rubber seed oil: A potential renewable source of biodiesel for sustainable development in sub-Saharan Africa. Energy Conversion and Management, 110, 125-134. https://doi.org/10.1016/j.enconman.2015.12.002

  • Putra, M. D., Ristianingsih, Y., Jelita, R., Irawan, C., & Nata, I. F. (2017). Potential waste from palm empty fruit bunches and eggshells as a heterogeneous catalyst for biodiesel production. RSC Advances, 7(87), 55547-55554. https://doi.org/10.1039/c7ra11031f

  • Rastegari, H., & Ghaziaskar, H. S. (2015). From glycerol as the by-product of biodiesel production to value-added monoacetin by continuous and selective esterification in acetic acid. Journal of Industrial and Engineering Chemistry, 21, 856-861. https://doi.org/10.1016/j.jiec.2014.04.023

  • Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5(1), Article 1. https://doi.org/10.1186/s40643-017-0187-z

  • Sharma, M., Khan, A. A., Puri, S. K., & Tuli, D. K. (2012). Wood ash as a potential heterogeneous catalyst for biodiesel synthesis. Biomass and Bioenergy, 41, 94-106. https://doi.org/10.1016/j.biombioe.2012.02.017

  • Souza, T. F. C., Ferreira, N. L., Marin, M., & Guardani, R. (2017). Glycerol esterification with acetic acid by reactive distillation using hexane as an entrainer. International Journal of Chemical Engineering and Applications, 8(6), 344-350.

  • Syamsiro, M., Saptoadi, H., Tambunan, B. H., & Pambudi, N. A. (2012). A preliminary study on use of cocoa pod husk as a renewable source of energy in Indonesia. Energy for Sustainable Development, 16(1), 74-77. https://doi.org/10.1016/j.esd.2011.10.005

  • Tan, H. W., Aziz, A. R. A., & Aroua, M. K. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127. https://doi.org/10.1016/j.rser.2013.06.035

  • Tasuna, N., Hidayatillah, K. H., Marwan, & Zuhra. (2021). Selective esterification of glycerol diacetin and triacetin over rice husk biosilica catalyst with microwave heating. In IOP Conference Series: Materials Science and Engineering (Vol. 1087, No. 1, p. 012063). IOP Publishing. https://doi.org/10.1088/1757-899x/1087/1/012063

  • Trisunaryanti, W., Triyono, T., Falah, I. I., Siagian, A. D., & Marsuki, M. F. (2018). Synthesis of Ce-mesoporous silica catalyst and its lifetime determination for the hydrocracking of waste lubricant. Indonesian Journal of Chemistry, 18(3), 441-447.

  • Widmer, W., Zhou, W., & Grohmann, K. (2010). Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresource Technology, 101(14), 5242-5249. https://doi.org/10.1016/j.biortech.2009.12.038

  • Wu, L., Dong, Z., Cai, Z., Ganapathy, T., Fang, N. X., Li, C., Yu, C., Zhang, Y., & Song, Y. (2020). Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications, 11(1), Article 521. https://doi.org/10.1038/s41467-020-14366-1

  • Yanti, N. R., Heryani, H., Putra, M. D., & Nugroho, A. (2019). Triacetin production from glycerol using heterogeneous catalysts prepared from peat clay. International Journal of Technology, 10(5), 291-319. https://doi.org/10.14716/ijtech.v10i5.2685

  • Yusof, N., Iranmanesh, M., & Awang, H. (2015). Pro-environmental practices among Malaysian construction practitioners. In Advances in Environmental Biology (pp. 117-120). American-Eurasian Network for Scientific Information.

  • Zhang, H., Zhao, X., Ding, X., Lei, H., Chen, X., An, D., Li, Y., & Wang, Z. (2010). A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk. Bioresource Technology, 101(4), 1263-1267. https://doi.org/10.1016/j.biortech.2009.09.045

  • Zulkefli, S., Abdulmalek, E., & Rahman, M. B. A. (2017). Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renewable Energy, 107, 36-41. https://doi.org/10.1016/j.renene.2017.01.037

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles