PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Amono, M., Watanabe, M., & Banjo, M. (1999). Self-testing and self-tuning of power system stabilizers using Prony analysis. In IEEE Power Engineering Society. Winter Meeting (Cat. No.99 CH36233) (Vol 1, pp. 655-660). IEEE Publishing. https://doi.org/10.1109/PESW.1999.747533

  • Avdakovic, S., Nuhanovic, A., Kusljugic, M., & Music, M. (2012). Wavelet transform applications in power system dynamics. Electric Power Systems Research, 83, 237-245. https://doi.org/https://doi.org/10.1016/j.epsr.2010.11.031

  • Browne, T. J., Vittal, V., Heydt, G. T., & Messina, A. R. (2008). A comparative assessment of two techniques for modal identification from power system measurements. In IEEE Transactions on Power Systems, (Vol. 23, pp. 1408-1415). IEEE Publishing. https://doi.org/10.1109/TPWRS.2008.926720

  • Girgis, A. A., & Ham, F. M. (1980). A quantitative study of pitfalls in the FFT. In IEEE Transactions on Aerospace and Electronic Systems, (Vol. 4, pp. 434-439). IEEE Publishing. https://doi.org/10.1109/TAES.1980.308971

  • Glickman, M., O’Shea, P., & Ledwich, G. (2007). Estimation of modal damping in power networks. In IEEE Transactions on Power Systems, (Vol. 22, pp. 1340-350). IEEE Publishing. https://doi.org/10.1109/TPWRS.2007.901122

  • Grant, L. L., & Crow, M. L. (2011). Comparison of matrix pencil and prony methods for power system modal analysis of noisy signals. In 2011 North American Power Symposium (pp.1-7). IEEE Publishing. https://doi.org/10.1109/NAPS.2011.6024892

  • Hauer, J. F. (1991). Application of Prony analysis to the determination of modal content and equivalent models for measured power system response. In IEEE Transactions on Power Systems, (Vol. 6, pp.1062-1068). IEEE Publishing. https://doi.org/10.1109/59.119247

  • Hauer, J. F., Demeure, C. J., & Scharf, L. L. (1990). Initial results in Prony analysis of power system response signals. In IEEE Transactions on Power Systems, (Vol. 5, pp. 80-89). IEEE Publishing. https://doi.org/10.1109/59.49090

  • Hua, Y., & Sarkar, T. K. (1990). Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. In IEEE Transactions on Acoustics, Speech, and Signal Processing, (Vol. 38, pp. 814-824). IEEE Publishing. https://doi.org/10.1109/29.56027

  • Kang, P., & Ledwich, G. (1999). Estimating power system modal parameters using wavelets. ISSPA ’99. Proceedings of the Fifth International Symposium on Signal Processing and Its Applications (IEEE Cat. No.99EX359) (Vol. 2, pp. 563-566). IEEE Publishing. https://doi.org/10.1109/ISSPA.1999.815735

  • Korba, P., Larsson, M., & Rehtanz, C. (2003). Detection of oscillations in power systems using Kalman filtering techniques. In Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003 (Vol.1, pp. 183-188). IEEE Publishing. https://doi.org/10.1109/CCA.2003.1223290

  • Kundur, P. (1994). Power system stability and control. Tata Mc-Graw Hill Co.

  • Laila, D. S., Messina, A. R., & Pal, B. C. (2009). A refined Hilbert-Huang transform with applications to inter-area oscillation monitoring. In IEEE Transactions on Power Systems, (pp. 610-620). IEEE Publishing. https://doi.org/10.1109/PES.2009.5275975

  • Philip, J. G., & Jain, T. (2018a). Analysis of low frequency oscillations in power system using EMO ESPRIT. International Journal of Electrical Power & Energy Systems, 95, 499-506. https://doi.org/10.1016/j.ijepes.2017.08.037

  • Philip, J. G., & Jain, T. (2018b). Estimation of modal parameters of low frequency oscillations in power system using Hankels total least square method. In 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), (pp. 764-769). IEEE Publishing. https://doi.org/10.1109/ISGT-Asia.2018.8467979

  • Pierre, J. W., Trudnowski, D. J., & Donnelly, M. K. (1997). Initial results in electromechanical mode identification from ambient data. In IEEE Transactions on Power Systems (Vol. 12, pp. 1245-1251). IEEE Publishing. https://doi.org/10.1109/59.630467

  • Qi, L., Qian, L., Woodruff, S., & Cartes, D. (2007). Prony analysis for power system transient harmonics. EURASIP Journal on Advances in Signal Processing, 2007, Article 48406. https://doi.org/10.1155/2007/48406

  • Rai, S., Tripathy, P., & Nayak, S. K. (2014). A robust TLS-ESPIRIT method using covariance approach for identification of low-frequency oscillatory mode in power systems. In 2014 Eighteenth National Power Systems Conference (NPSC) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/NPSC.2014.7103887

  • Rai, S., Lalani, D., Nayak, S. K. K., Jacob, T., & Tripathy, P. (2016). Estimation of low-frequency modes in power system using robust modified Prony. IET Generation, Transmission & Distribution, 10(6), 1401-1409.

  • Rueda, J. L., Juarez, C. A., & Erlich, I. (2011). Wavelet-based analysis of power system low-frequency electromechanical oscillations. In IEEE Transactions on Power Systems (Vol. 26, pp. 1733-1743). IEEE Publishing. https://doi.org/10.1109/TPWRS.2010.2104164

  • Trentini, R., Kutzner, R., Hofmann, L., Oliveira, J. de, & Nied, A. (2019). On the electromechanical energy approach: a novel modeling method for power systems stability studies. In IEEE Transactions on Power Systems (Vol. 34, pp. 1771-1779). IEEE Publishing. https://doi.org/10.1109/TPWRS.2018.2887001

  • Tripathy, P., Srivastava, S. C., & Singh, S. N. (2011). A modified TLS-ESPRIT-based method for low-frequency mode identification in power systems utilizing synchrophasor measurements. In IEEE Transactions on Power Systems (Vol. 26, pp. 719-727). IEEE Publishing. https://doi.org/10.1109/TPWRS.2010.2055901

  • Trudnowski, D. I. (1994). Order reduction of large-scale linear oscillatory system models. In IEEE Transactions on Power Systems (Vol. 9, pp. 451-458). IEEE Publishing. https://doi.org/10.1109/59.317578

  • Trudnowski, D. J., Johnson, J. M., & Hauer, J. F. (1999). Making Prony analysis more accurate using multiple signals. In IEEE Transactions on Power Systems (Vol. 14, pp. 226-231). IEEE Publishing. https://doi.org/10.1109/59.744537

  • Wadduwage, D. P., Annakkage, U. D., & Narendra, K. (2015). Identification of dominant low-frequency modes in ring-down oscillations using multiple Prony models. IET Generation, Transmission & Distribution, 9(15), 2206-2214.

  • Wang, L., & Semlyen, A. (1990). Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems. IEEE Transactions on Power Systems (Vol. 5, pp. 635-642). IEEE Publishing. https://doi.org/10.1109/59.54575

  • Wang, X., Tang, F., Wang, X., & Zhang, P. (2014). Estimation of electromechanical modes under ambient condition via random decrement technique and TLS-ESPRIT algorithm. In 2014 International Conference on Power System Technology (pp. 588-593). IEEE Publishing. https://doi.org/10.1109/POWERCON.2014.6993775

  • Wies, R. W., Pierre, J. W., & Trudnowski, D. J. (2003). Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems. IEEE Transactions on Power Systems (Vol. 18, pp. 167-173). IEEE Publishing. https://doi.org/10.1109/TPWRS.2002.807116

  • Xie, X., Zhang, S., Xiao, J., Wu, J., & Pu, Y. (2005). Small signal stability assessment with online eigenvalue identification based on wide-area measurement system. 2005 IEEE/PES Transmission Distribution Conference Exposition: Asia and Pacific, (pp 1-5). IEEE Publishing. https://doi.org/10.1109/TDC.2005.1546826

  • Zhang, S., Xie, X., & Wu, J. (2008). WAMS-based detection and early-warning of low-frequency oscillations in large-scale power systems. Electric Power Systems Research, 78(5), 897-906. https://doi.org/10.1016/J.EPSR.2007.06.008

  • Zhou, N., Huang, Z., Tuffner, F., Pierre, J., & Jin, S. (2010). Automatic implementation of Prony analysis for electromechanical mode identification from phasor measurements. IEEE PES General Meeting (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/PES.2010.5590169

  • Zhou, N., Trudnowski, D. J., Pierre, J. W., & Mittelstadt, W. A. (2008). Electromechanical mode online estimation using regularized robust RLS methods. In IEEE Transactions on Power Systems (Vol. 23, pp. 1670-1680). IEEE Publishing. https://doi.org/10.1109/TPWRS.2008.2002173

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles