e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Akhair, S. S. M., Harun, Z., Jamalludin, M. R., Shuhor, M. F., Kamarudin, N. H., Yunos, M. Z., Ahmad, A., & Azhar, M. F. H. (2017). Polymer mixed matrix membrane with graphene oxide for humic acid performances. Chemical Engineering Transactions, 56, 697-702. https://doi.org/10.3303/CET1756117
Amedi, H. R., & Aghajani, M. (2017). Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application. Microporous and Mesoporous Materials, 247, 124-135. https://doi.org/10.1016/j.micromeso.2017.04.001
Cheshomi, N., Pakizeh, M., & Namvar-Mahboub, M. (2018). Preparation and characterization of TiO2/Pebax/(PSf-PES) thin film nanocomposite membrane for humic acid removal from water. Polymers for Advanced Technologies, 29(4), 1303-1312. https://doi.org/10.1002/pat.4242
Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V., & Liu, J. (2016). Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 520, 860-868. https://doi.org/10.1016/j.memsci.2016.08.059
Dong, L., Chen, M., Li, J., Shi, D., Dong, W., Li, X., & Bai, Y. (2016). Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 520, 801-811. doi: https://doi.org/10.1016/j.memsci.2016.08.043
Feijani, E. A., Tavassoli, A., Mahdavi, H., & Molavi, H. (2018). Effective gas separation through graphene oxide containing mixed matrix membranes. Journal of Applied Polymer Science, 135, Article 46271. https://doi.org/10.1002/app.46271
Feng, Y., Li, Y., Xu, M., Liu, S., & Yao, J. (2016). Fast adsorption of methyl blue on zeolitic imidazolate framework-8 and its adsorption mechanism. RSC Advances, 6(111), 109608-109612. https://doi.org/10.1039/C6RA23870J
Gao, D., Si, M., Li, J. Zhang, J., Zhang, Z., Yang, Z., & Xue, D. (2013). Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Research Letters, 8(1), 1-8. https://doi.org/10.1186/1556-276X-8-129
Garcia-Fayos, J., Balaguer, M., Baumann, S., & Serra, J. M. (2018). Dual-phase membrane based on LaCo0.2Ni0.4Fe0.4O3−x-Ce0.8Gd0.2O2−x composition for oxygen permeation under CO2/SO2-rich gas environments. Journal of Membrane Science, 548, 117-124. doi: https://doi.org/10.1016/j.memsci.2017.11.006
Hadi, A., Karimi-Sabet, J., Nikkho, S., & Dastbaz, A. (2021). Fabrication of ZIF-8/polyethersulfone (PES) mixed matrix hollow fiber membranes for O2/N2 separation. Chemical Papers, 75, 4129-4145. https://doi.org/10.1007/s11696-021-01642-7
Jamil, N., Othman, N. H., Alias, N. H., Shahruddin, M. Z., Roslan, R. A., Lau, W. J., & Ismail, A. F. (2019). Mixed matrix membranes incorporated with reduced graphene oxide (rGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation. Journal of Solid State Chemistry, 270, 419-427. https://doi.org/10.1016/j.jssc.2018.11.028
Jusoh, N., Yeong, Y. F., Lau, K. K., & Shariff, A. M. (2016). Mixed matrix membranes comprising of ZIF-8 nanofillers for enhanced gas transport properties. Procedia Engineering, 148, 1259-1265. https://doi.org/10.1016/j.proeng.2016.06.499
Kamble, A. R., Patel, C. M., & Murthy, Z. V. P. (2021). A review on the recent advances in mixed matrix membranes for gas separation processes. Renewable and Sustainable Energy Reviews, 145, Article 111062. https://doi.org/10.1016/j.rser.2021.111062
Krishnan, G., Mohtar, S. S., Aziz, F., Jaafar, J., Yusof, N., Salleh, W. N. W., & Ismail, A. F. (2020). Mixed matrix composite membranes based on amination of reduced graphene oxide for CO2 separation: Effects of heating time and nanofiller loading. Korean Journal of Chemical Engineering, 37(12), 2287-2294. https://doi.org/10.1007/s11814-020-0649-4
Kumar, S., Sharma, V., Bhattacharyya, K., & Krishnan, V. (2016). Synergetic effect of MoS 2–RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New Journal of Chemistry, 40(6), 5185-5197. https://doi.org/10.1039/C5NJ03595C
Lai, L. S., Yeong, Y. F., Lau, K. K., & Shariff, A. M. (2016). Effect of synthesis parameters on the formation of ZIF-8 under microwave-assisted solvothermal. Procedia Engineering, 148, 35-42. https://doi.org/10.1016/j.proeng.2016.06.481
Liu, G., Jin, W., & Xu, N. (2016). Two-dimensional-material membranes: A new family of high-performance separation membranes. Angewandte Chemie International Edition, 55(43), 13384-13397. https://doi.org/10.1002/anie.201600438
Mei, X., Yang, S., Lu, P., Zhang, Y., & Zhang, J. (2020). Improving the selectivity of ZIF-8/Polysulfone-Mixed Matrix Membranes by Polydopamine Modification for H2/CO2 separation. Frontiers in Chemistry, 8, Article 528. https://doi.org/10.3389/fchem.2020.00528
Moghadam, F., & Park, H. B. (2019). 2D nanoporous materials: Membrane platform for gas and liquid separations. 2D Materials, 6(4), Article 042002. https://doi.org/10.1088/2053-1583/ab1519
Qu, P., Tang, H., Gao, Y., Zhang, L., & Wang, S. (2010). Polyethersulfone composite membrane blended with cellulose fibrils. BioResources, 5(4), 2323-2336.
Ries, L., Petit, E., Michel, T., Diogo, C. C., Gervais, C., Salameh, C., Bechelany, M., Balme, S., Miele, P., Onofrio, N., & Voiry, D. (2019). Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nature Materials, 18(10), 1112-1117. https://doi.org/10.1038/s41563-019-0464-7
Sainath, K., Modi, A., & Bellare, J. (2021). CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: Evaluating effect of filler concentration on performance. Chemical Engineering Journal Advances, 5, Article 100074. https://doi.org/10.1016/j.ceja.2020.100074
Shen, Y., Wang, H., Zhang, X., & Zhang, Y. (2016). MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 8(35), 23371-23378. https://doi.org/10.1021/acsami.6b07153
Wang, H., Wang, Y., Jia, A., Wang, C., Wu, L., Yang, Y., & Wang, Y. (2017). A novel bifunctional Pd–ZIF-8/rGO catalyst with spatially separated active sites for the tandem Knoevenagel condensation–reduction reaction. Catalysis Science & Technology, 7(23), 5572-5584. https://doi.org/10.1039/C7CY01725A
Zainuddin, M., F., Raikhan, N. N. H., Othman, N. H., & Abdullah, W. F. H. (2017, February 15-16). Synthesis of reduced Graphene Oxide (rGO) using different treatments of Graphene Oxide (GO). [Paper presentation]. IOP Conference Series: Materials Science and Engineering, Putrajaya, Malaysia. https://doi.org/10.1088/1757-899X/358/1/012046
ISSN 1511-3701
e-ISSN 2231-8542