e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Akbari, S.,& Nour, A. H. (2018). Emulsion types, stability mechanisms and rheology: A review. International Journal of Innovative Research and Scientific Studies, 1(1), 11-17. https://doi.org/10.53894/ijirss.v1i1.4
Alazab, A. A, & Saleh, T. A. (2022). Magnetic hydrophobic cellulose-modified polyurethane filter for efficient oil-water separation in a complex water environment. Journal of Water Process Engineering, 50, Article 103125. https://doi.org/10.1016/j.jwpe.2022.103125
Allouss, D., Essamlali, Y., Amadine, O., Chakir, A., & Zahouily, M. (2019). Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Advances, 9(65), 37858-37869. https://doi.org/10.1039/c9ra06450h
Alnaief, M., Alzaitoun, M. A., García-González, C. A., & Smirnova, I. (2011). Preparation of biodegradable nanoporous microspherical aerogel based on alginate. Carbohydrate Polymers, 84(3), 1011-1018. https://doi.org/10.1016/j.carbpol.2010.12.060
An, H. J., Park, H., & Cho, B. U. (2021). Effect of temperature of tetraethylammonium hydroxide/urea/cellulose solution on surface tension and cellulose bead size. Journal of Korea Technical Association of the Pulp and Paper Industry, 53(6), 69-76. https://doi.org/10.7584/jktappi.2021.12.53.6.69
Balart, R., Garcia-Garcia, D., Fombuena, V., Quiles-Carrillo, L., & Arrieta, M. P. (2021). Biopolymers from natural resources. Polymers, 13(15), Article 2532. https://doi.org/10.3390/polym13152532
Bhardwaj, P., Kamil, M., & Panda, M. (2018). Surfactant-polymer interaction: effect of hydroxypropylmethyl cellulose on the surface and solution properties of gemini surfactants. Colloid and Polymer Science, 296(11), 1879-1889. https://doi.org/10.1007/s00396-018-4409-5
Califano, D., Patenall, B. L., Kadowaki, M. A. S., Mattia, D., Scott, J. L., & Edler, K. J. (2021). Enzyme-functionalized cellulose beads as a promising antimicrobial material. Biomacromolecules, 22(2), 754-762. https://doi.org/10.1021/acs.biomac.0c01536
Carvalho, J. P. F., Silva, A. C. Q., Silvestre, A. J. D., Freire, C. S. R., & Vilela, C. (2021). Spherical cellulose micro and nanoparticles: A review of recent developments and applications. Nanomaterials, 11(10), Article 2744. https://doi.org/10.3390/nano11102744
Chin, S. F., Jimmy, F. B., & Pang, S. C. (2016). Fabrication of cellulose aerogel from sugarcane bagasse as drug delivery carriers. Journal of Physical Science, 27(3), 159-168. https://doi.org/10.21315/jps2016.27.3.10
Chin, S. F., Azman, A., & Pang, S. C. (2014). Size controlled synthesis of starch nanoparticles by a microemulsion method. Journal of Nanomaterials, 2014, Article 763736. https://doi.org/10.1155/2014/763736
Chin, S. F., Jimmy, F. B., & Pang, S. C. (2018). Size controlled fabrication of cellulose nanoparticles for drug delivery applications. Journal of Drug Delivery Science and Technology, 43, 262-266. https://doi.org/10.1016/j.jddst.2017.10.021
Chin, S. F., Jong, S. J., & Yeo, Y. J. (2021). Optimization of cellulose-based hydrogel synthesis using response surface methodology. Biointerface Research in Applied Chemistry, 12(6), 7136-7146. https://doi.org/10.33263/BRIAC126.71367146
Chin, S. F., Yazid, S. N. A. M., & Pang, S. C. (2014). Preparation and characterization of starch nanoparticles for controlled release of curcumin. International Journal of Polymer Science, 2014, Article 340121. https://doi.org/10.1155/2014/340121
Ching, Y. C., Gunathilake, T. M. S. U., Chuah, C. H., Ching, K. Y., Singh, R., & Liou, N. S. (2019). Curcumin/tween 20-incorporated cellulose nanoparticles with enhanced curcumin solubility for nano-drug delivery: Characterization and in vitro evaluation. Cellulose, 26(9), 5467-5481. https://doi.org/10.1007/s10570-019-02445-6
Conforti, C., Giuffrida, R., Fadda, S., Fai, A., Romita, P., Zalaudek, I., & Dianzani, C. (2021). Topical dermocosmetics and acne vulgaris. Dermatologic Therapy, 34(1), Article e14436. https://doi.org/10.1111/dth.14436
Costa, C., Medronho, B., Filipe, A., Mira, I., Lindman, B., Edlund, H., & Norgren, M. (2019). Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers, 11(10), Article 1570. https://doi.org/10.3390/polym11101570
Culica, M. E., Chibac-Scutaru, A. L., Mohan, T., & Coseri, S. (2021). Cellulose-based biogenic supports, remarkably friendly biomaterials for proteins and biomolecules. Biosensors and Bioelectronics, 182, Article 113170. https://doi.org/10.1016/j.bios.2021.113170
Druel, L., Niemeyer, P., Milow, B., & Budtova, T. (2018). Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chemistry, 20(17), 3993-4002. https://doi.org/10.1039/c8gc01189c
Du, K., Li, S., Zhao, L., Qiao, L., Ai, H., & Liu, X. (2018). One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption. ACS Sustainable Chemistry and Engineering, 6(12), 17068-17075. https://doi.org/10.1021/acssuschemeng.8b04433
Essawy, H. A., Ghazy, M. B. M., El-Hai, F. A., & Mohamed, M. F. (2016). Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. International Journal of Biological Macromolecules, 89, 144-151. https://doi.org/10.1016/j.ijbiomac.2016.04.071
Ethayaraja, M., Ravikumar, C., Muthukumaran, D., Dutta, K., & Bandyopadhyaya, R. (2007). CdS−ZnS core−shell nanoparticle formation: Experiment, mechanism, and simulation. The Journal of Physical Chemistry C, 111(8), 3246-3252. https://doi.org/10.1021/jp066066j
França, D., de Barros, J. R. S., & Faez, R. (2021). Spray-dried cellulose nanofibrils microparticles as a vehicle for enhanced efficiency fertilizers. Cellulose, 28(3), 1571-1585. https://doi.org/10.1007/s10570-020-03609-5
Gericke, M., Trygg, J., & Fardim, P. (2013). Functional cellulose beads: Preparation, characterization, and applications. Chemical Reviews, 113(7), 4812-4836. https://doi.org/10.1021/cr300242j
Gomes, M. H. F., Callaghan, C., Mendes, A. C. S., Edler, K. J., Mattia, D., de Jong van Lier, Q., & de Carvalho, H. W. P. (2022). Cellulose microbeads: Toward the controlled release of nutrients to plants. ACS Agricultural Science & Technology, 2(2), 340-348. https://doi.org/10.1021/acsagscitech.1c00233
Guan, H., Li, J., Zhang, B., & Yu, X. (2017). Synthesis, properties, and humidity resistance enhancement of biodegradable cellulose-containing superabsorbent polymer. Journal of Polymers, 2017, Article 3134681. https://doi.org/10.1155/2017/3134681
Gülsu, A., & Yüksektepe, E. (2021). Preparation of spherical cellulose nanoparticles from recycled waste cotton for anticancer drug delivery. Chemistry Select, 6(22), 5419-5425. https://doi.org/10.1002/slct.202101683
Guo, H., Lei, B., Yu, J., Chen, Y., & Qian, J. (2021). Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. International Journal of Biological Macromolecules, 185, 287-296. https://doi.org/10.1016/j.ijbiomac.2021.06.073
Hakim, S. L., Kusumasari, F. C., & Budianto, E. (2020). Optimization of biodegradable PLA/PCL microspheres preparation as controlled drug delivery carrier. Materials Today: Proceedings, 22, 306-313. https://doi.org/10.1016/j.matpr.2019.08.156
Hamidon, T. S., Adnan, R., Haafiz, M. K. M., & Hussin, M. H. (2022). Cellulose-based beads for the adsorptive removal of wastewater effluents: A review. Environmental Chemistry Letters, 20(3), 1965-2017. https://doi.org/10.1007/s10311-022-01401-4
Harada, N., Nakamura, J., & Uyama, H. (2021). Single-step fabrication and environmental applications of activated carbon-containing porous cellulose beads. Reactive and Functional Polymers, 160, Article 104830. https://doi.org/10.1016/j.reactfunctpolym.2021.104830
Ho, B. K., Chin, S. F., & Pang, S. C. (2020). pH-responsive carboxylic cellulose acetate nanoparticles for controlled release of penicillin G. Journal of Science: Advanced Materials and Devices, 5(2), 224-232. https://doi.org/10.1016/j.jsamd.2020.04.002
Hu, Z. H., Omer, A. M., Ouyang, X. K., & Yu, D. (2018). Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. International Journal of Biological Macromolecules, 108, 149-157. https://doi.org/10.1016/j.ijbiomac.2017.11.171
Jampi, A. L. W., Chin, S. F., Wasli, M. E., & Chia, C. H. (2021). Preparation of cellulose hydrogel from sago pith waste as a medium for seed germination. Journal of Physical Science, 32(1), 13-26. https://doi.org/10.21315/JPS2021.32.1.2
Jancy, S., Shruthy, R., & Preetha, R. (2020). Fabrication of packaging film reinforced with cellulose nanoparticles synthesised from jack fruit non-edible part using response surface methodology. International Journal of Biological Macromolecules, 142, 63-72. https://doi.org/10.1016/j.ijbiomac.2019.09.066
Jo, S., Park, S., Oh, Y., Hong, J., Kim, H. J., Kim, K. J., Oh, K. K., & Lee, S. H. (2019). Development of cellulose hydrogel microspheres for lipase immobilization. Biotechnology and Bioprocess Engineering, 24(1), 145-154. https://doi.org/10.1007/s12257-018-0335-0
Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science, 2011, 1-35. https://doi.org/10.1155/2011/837875
Karri, R. R., Tanzifi, M., Yaraki, M. T., & Sahu, J. N. (2018). Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. Journal of Environmental Management, 223, 517-529. https://doi.org/10.1016/j.jenvman.2018.06.027
Kemin, L. V., & Chin, S. F. (2020). Amino-starch nanoparticles as controlled release nanocarriers for curcumin. Journal of Physical Science, 31(2), 1-14. https://doi.org/10.21315/jps2020.31.2.1
Kim, B., Choi, Y., Choi, J., Shin, Y., & Lee, S. (2020). Effect of surfactant on wetting due to fouling in membrane distillation membrane: Application of response surface methodology (RSM) and artificial neural networks (ANN). Korean Journal of Chemical Engineering, 37(1), 1-10. https://doi.org/10.1007/s11814-019-0420-x
Lechuga, M., Fernández-Serrano, M., Jurado, E., Núñez-Olea, J., & Ríos, F. (2016). Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicology and Environmental Safety, 125, 1-8. https://doi.org/10.1016/j.ecoenv.2015.11.027
Lee, J., & Patel, R. (2022). Wastewater treatment by polymeric microspheres: A review. Polymers, 14(9), Article 1890. https://doi.org/10.3390/polym14091890
Lefroy, K. S., Murray, B. S., & Ries, M. E. (2022). Relationship between size and cellulose content of cellulose microgels (CMGs) and their water-in-oil emulsifying capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647, Article 128926. https://doi.org/10.1016/j.colsurfa.2022.128926
Li, H., Kruteva, M., Dulle, M., Wang, Z., Mystek, K., Ji, W., Pettersson, T., & Wågberg, L. (2022). Understanding the drying behavior of regenerated cellulose gel beads: The effects of concentration and nonsolvents. ACS Nano, 16(2), 2608-2620. https://doi.org/10.1021/acsnano.1c09338
Li, M. C., Wu, Q., Song, K., Lee, S., Qing, Y., & Wu, Y. (2015). Cellulose nanoparticles: Structure-morphology-rheology relationships. ACS Sustainable Chemistry and Engineering, 3(5), 821-832. https://doi.org/https://doi.org/10.1021/acssuschemeng.5b00144
Li, M., Zhang, H., Wu, Z., Zhu, Z., & Jia, X. (2022). DPD simulation on the transformation and stability of O/W and W/O microemulsions. Molecules, 27(4), Article 1361. https://doi.org/10.3390/molecules27041361
Li, Q., Dang, L., Li, S., Liu, X., Guo, Y., Lu, C., Kou, X., & Wang, Z. (2018). Preparation of α-linolenic-acid-loaded water-in-oil-in-water microemulsion and its potential as a fluorescent delivery carrier with a free label. Journal of Agricultural and Food Chemistry, 66(49), 13020-13030. https://doi.org/10.1021/acs.jafc.8b04678
Li, Z., Wu, W., Jiang, W., Zhang, L., Li, Y., Tan, Y., Chen, S., Lv, M., Luo, F., Luo, T., & Wei, G. (2020). Preparation and regeneration of a thermo-sensitive adsorbent material: Methyl cellulose/calcium alginate beads (MC/CABs). Polymer Bulletin, 77(4), 1707-1728. https://doi.org/10.1007/s00289-019-02808-w
Lince, F., Marchisio, D. L., & Barresi, A. A. (2008). Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. Journal of Colloid and Interface Science, 322(2), 505-515. https://doi.org/10.1016/j.jcis.2008.03.033
Liu, Y., Qiao, L., Wang, A., Li, Y., Zhao, L., & Du, K. (2021). Tentacle-type poly(hydroxamic acid)-modified macroporous cellulose beads: Synthesis, characterization, and application for heavy metal ions adsorption. Journal of Chromatography A, 1645, Article 462098. https://doi.org/10.1016/j.chroma.2021.462098
Luo, X., & Zhang, L. (2010). Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. Journal of Chromatography A, 1217(38), 5922-5929. https://doi.org/10.1016/j.chroma.2010.07.026
Machado, T. O., Grabow, J., Sayer, C., de Araújo, P. H. H., Ehrenhard, M. L., & Wurm, F. R. (2022). Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Advances in Colloid and Interface Science, 303, Article 102645. https://doi.org/10.1016/j.cis.2022.102645
Maity, D., Ding, J., & Xue, J. M. (2008). Synthesis of magnetite nanoparticles by thermal decomposition: Time, temperature, surfactant and solvent effects. Functional Materials Letters, 1(3), 189-193. https://doi.org/10.1142/S1793604708000381
Meng, R., Liu, L., Jin, Y., Luo, Z., Gao, H., & Yao, J. (2019). Recyclable carboxylated cellulose beads with tunable pore structure and size for highly efficient dye removal. Cellulose, 26(17), 8963-8969. https://doi.org/10.1007/s10570-019-02733-1
Michor, E. L., & Berg, J. C. (2015). Temperature effects on micelle formation and particle charging with span surfactants in apolar media. Langmuir, 31(35), 9602-9607. https://doi.org/10.1021/acs.langmuir.5b02711
Mohan, T., Ajdnik, U., Nagaraj, C., Lackner, F., Štiglic, A. D., Palani, T., Amornkitbamrung, L., Gradišnik, L., Maver, U., Kargl, R., & Kleinschek, K. S. (2022). One-step fabrication of hollow spherical cellulose beads: Application in pH-responsive therapeutic delivery. ACS Applied Materials and Interfaces, 14(3), 3726-3739. https://doi.org/10.1021/acsami.1c19577
Pal, N., Agarwal, M., & Gupta, R. (2022). Green synthesis of guar gum/Ag nanoparticles and their role in peel-off gel for enhanced antibacterial efficiency and optimization using RSM. International Journal of Biological Macromolecules, 221, 665-678. https://doi.org/10.1016/j.ijbiomac.2022.09.036
Pang, S. C., Chin, S. F., & Yih, V. (2011). Conversion of cellulosic waste materials into nanostructured ceramics and nanocomposites. Advanced Materials Letters, 2(2), 118-124. https://doi.org/10.5185/amlett.2011.1203
Pang, S. C., Voon, L. K., & Chin, S. F. (2018). Controlled depolymerization of cellulose fibres isolated from lignocellulosic biomass wastes. International Journal of Polymer Science, 2018, 1-11. https://doi.org/10.1155/2018/6872893
Ren, S., Sun, X., Lei, T., & Wu, Q. (2014). The effect of chemical and high-pressure homogenization treatment conditions on the morphology of cellulose nanoparticles. Journal of Nanomaterials, 2014, 168-168. https://doi.org/10.1155/2014/582913
Roque, L., Fernández, M., Benito, J. M., & Escudero, I. (2020). Stability and characterization studies of Span 80 niosomes modified with CTAB in the presence of NaCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 601, Article 124999. https://doi.org/10.1016/j.colsurfa.2020.124999
Russell-Jones, G., & Himes, R. (2011). Water-in-oil microemulsions for effective transdermal delivery of proteins. Expert Opinion on Drug Delivery, 8(4), 537-546. https://doi.org/10.1517/17425247.2011.559458
Saleh, T. A. (2021). Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environmental Technology and Innovation, 24, Article 101821. https://doi.org/10.1016/j.eti.2021.101821
Schroeter, B., Yonkova, V. P., Niemeyer, N. A. M., Jung, I., Preibisch, I., Gurikov, P., & Smirnova, I. (2021). Cellulose aerogel particles: Control of particle and textural properties in jet cutting process. Cellulose, 28(1), 223-239. https://doi.org/10.1007/s10570-020-03555-2
Sebeia, N., Jabli, M., Ghanmi, H., Ghith, A., & Saleh, T. A. (2021). Effective dyeing of cotton fibers using cynomorium coccineum L. peel extracts: Study of the influential factors using surface response methodology. Journal of Natural Fibers, 18(1), 21-33. https://doi.org/10.1080/15440478.2019.1612302
Shahnaz, T., Sharma, V., Subbiah, S., & Narayanasamy, S. (2020). Multivariate optimisation of Cr(VI), Co(III) and Cu(II) adsorption onto nanobentonite incorporated nanocellulose/chitosan aerogel using response surface methodology. Journal of Water Process Engineering, 36, Article 101283. https://doi.org/10.1016/j.jwpe.2020.101283
Shi, F., Lin, D. Q., Phottraithip, W., & Yao, S. J. (2011). Preparation of cellulose-tungsten carbide composite beads with ionic liquid for expanded bed application. Journal of Applied Polymer Science, 119(6), 3453-3461. https://doi.org/10.1002/app.33005
Shi, W., Ching, Y. C., & Chuah, C. H. (2021). Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: A review. International Journal of Biological Macromolecules, 170, 751-767. https://doi.org/10.1016/j.ijbiomac.2020.12.214
Song, M., Liu, W., Wang, Q., Wang, J., & Chai, J. (2020). A surfactant-free microemulsion containing diethyl malonate, ethanol, and water: Microstructure, micropolarity and solubilizations. Journal of Industrial and Engineering Chemistry, 83, 81-89. https://doi.org/10.1016/j.jiec.2019.11.016
Tay, S. H., Pang, S. C., & Chin, S. F. (2012). A facile approach for controlled synthesis of hydrophilic starch-based nanoparticles from native sago starch. Starch/Staerke, 64(12), 984-990. https://doi.org/10.1002/star.201200056
Tong, K., Zhao, C., Sun, Z., & Sun, D. (2015). Formation of concentrated nanoemulsion by W/O microemulsion dilution method: Biodiesel, tween 80, and water system. ACS Sustainable Chemistry & Engineering, 3(12), 3299-3306. https://doi.org/10.1021/acssuschemeng.5b00903
Trygg, J., Fardim, P., Gericke, M., Mäkilä, E., & Salonen, J. (2013). Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydrate Polymers, 93(1), 291-299. https://doi.org/10.1016/j.carbpol.2012.03.085
Voon, L. K., Pang, S. C., & Chin, S. F. (2015). Highly porous cellulose beads of controllable sizes derived from regenerated cellulose of printed paper wastes. Materials Letters, 164, 264-266. https://doi.org/10.1016/j.matlet.2015.10.161
Voon, L. K., Pang, S. C., & Chin, S. F. (2016). Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes. Carbohydrate Polymers, 142, 31-37. https://doi.org/10.1016/j.carbpol.2016.01.027
Voon, L. K., Pang, S. C., & Chin, S. F. (2017a). Optimizing delivery characteristics of curcumin as a model drug via tailoring mean diameter ranges of cellulose beads. International Journal of Polymer Science, 2017, Article 2581767. https://doi.org/10.1155/2017/2581767
Voon, L. K., Pang, S. C., & Chin, S. F. (2017b). Porous cellulose beads fabricated from regenerated cellulose as potential drug delivery carriers. Journal of Chemistry, 2017, Article 1943432. https://doi.org/10.1155/2017/1943432
Wang, G., Yang, X., & Wang, W. (2019). Reinforcing linear low-density polyethylene with surfactant-treated microfibrillated cellulose. Polymers, 11(3), Article 441. https://doi.org/10.3390/polym11030441
Winuprasith, T., & Suphantharika, M. (2015). Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food Hydrocolloids, 43, 690-699. https://doi.org/10.1016/j.foodhyd.2014.07.027
Wu, R., & Hu, C. (2021). Fabrication of magnetic cellulose microspheres by response surface methodology and adsorption study for Cu(II). Cellulose, 28(3), 1499-1511. https://doi.org/10.1007/s10570-020-03640-6
Xu, F., & Cho, B. U. (2022). Preparation of porous regenerated cellulose microstructures via emulsion-coagulation technique. Cellulose, 29(3), 1527-1542. https://doi.org/10.1007/s10570-022-04428-6
Yan, X., Berard, J., & Ganachaud, F. (2021). Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies. Advances in Colloid and Interface Science, 294, Article 102474. https://doi.org/10.1016/j.cis.2021.102474
ISSN 1511-3701
e-ISSN 2231-8542