PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abdelgneia, M. A. H., Omar, M. Z., Ghazalib, M. J., Gebrilb, M. A., & Mohammed, M. N. (2019). The effect of the rheocast process on the microstructure and mechanical properties of Al-5.7Si-2Cu-0.3Mg alloy. Jurnal Kejuruteraan, 31(2), 317-326. https://doi.org/10.17576/jkukm-2019-31(2)-17

  • Abdin, Z., Prabantariksob, R. M., Fahmy, E., & Farhan, A. (2022). Analysis of the efficiency of insurance companies in Indonesia. Decision Science Letters, 11(2022), 105-112. https://doi.org/10.5267/j.dsl.2022.1.002

  • Agarwal, N., Pradhan, M. K., & Shrivastava, N. (2018). A new respond Jaya algorithm for optimization of EDM process parameters. Materials Todays Proceedings, 5(11, Part 3), 23759-23768. https://doi.org/10.1016/j.matpr.2018.10.167

  • Annamalai, S., Periyakgoundar, S., & Gunasekaran, S. (2019). Magnesium alloys: A review of applications. Materials and Technology, 53(6), 881-890. https://doi.org/10.17222/mit.2019.065

  • Asadollahi-Yazdi, E., Gardan, J., & Lafon, P. (2018). Multi-objective optimization of additive manufacturing process. IFAC-PapersOnLine, 51(11), 152-157. https://doi.org/10.1016/j.ifacol.2018.08.250

  • Balachandran, G. (2018). Challenges in special steel making. IOP Conference Series: Materials Science and Engineering, 314, Article 012016. https://doi.org/10.1088/1757-899X/314/1/012016

  • Binesh, B., & Aghaie-Khafri, M. (2017). Modelling and optimization of semi-solid processing of 7075 Al alloy. Materials Research Express, 4, Article 096502. https://doi.org/10.1088/2053-1591/aa8272

  • Brezocnik, M., & Župerl, U. (2021). Optimization of the continuous casting process of hypoeutectoid steel grades using multiple linear regression and genetic programming - An industrial study. Metals, 11(6), Article 972. https://doi.org/10.3390/met11060972

  • Britto, A., & Pozo, A. (2012). Using archiving methods to control convergence and diversity for many-objective problems in particle swarm optimization. In 2012 IEEE Congress on Evolutionary Computation (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/CEC.2012.6256149

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.

  • El-Ashmawi, W. H., Ali, A. F., & Slowik, A. (2020). An improved Jaya algorithm with a modified swap operator for solving team formation problem. Soft Computing, 24, 16627-16641. https://doi.org/10.1007/s00500-020-04965-x

  • Esonye, C., Onukwuli, O. D., Anadebe, V. C., Ezeugo, J. N. O., & Ogbodo, N. J. (2021). Application of soft-computing techniques for statistical modeling and optimization of Dyacrodes edulis seed oil extraction using polar and non-polar solvents. Heliyon, 7(3), Article e06342. https://doi.org/10.1016/j.heliyon.2021.e06342

  • Fadaee, M., Mahdavi-Meymand, A., & Zounemat-Kermani, M. (2022). Suspended sediment prediction using integrative soft computing models: On the analogy between the butterfly optimization and genetic algorithms. Geocarto International, 37(4), 961-977. https://doi.org/10.1080/10106049.2020.1753821

  • Feng, Q., & Zhou, X. (2019). Automated and robust multi-objective optimal design of thin-walled product injection process based on hybrid RBF-MOGA. The International Journal of Advanced Manufacturing Technology, 101, 2217-2231. https://doi.org/10.1007/s00170-018-3084-5

  • Feng, Y., Lu, R., Gao, Y., Zheng, H., Wang, Y., & Mo, W. (2018). Multi-objective optimization of VBHF in sheet metal deep-drawing using Kriging, MOABC, and set pair analysis. The International Journal of Advanced Manufacturing Technology, 96, 3127-3138. https://doi.org/10.1007/s00170-017-1506-4

  • Ganesh, N., Shankar, R., Kalita, K., Jangir, P., Oliva, D., & Pérez-Cisneros, M. (2023). A novel decomposition-based multi-objective symbiotic organism search optimization algorithm. Mathematics, 11(8), Article 1898. https://doi.org/10.3390/math11081898

  • Goudos, S. K., Deruyck, M., Plets, D., Martens, L., Psannis, K. E., Sarigiannidis, P., & Joseph, W. (2019). A novel design approach for 5G massive MIMO and NB-IoT green networks using a hybrid jaya-differential evolution algorithm. IEEE Access, 7, 105687-105700. https://doi.org/10.1109/ACCESS.2019.2932042

  • Guo, Y., Liu, W., Sun, M., Xu, B., & Li, D. (2018). A method based on semi-solid forming for eliminating coarse dendrites and shrinkage porosity of H13 tool steel. Metals, 8(4), Article 277. https://doi.org/10.3390/met8040277

  • Jangir, P., Buch, H., Mirjalili, S., & Manoharan, P. (2023). MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems. Evolutionary Intelligence, 16, 169-195. https://doi.org/10.1007/s12065-021-00649-z

  • Ji, Z., & Xie, Z. (2008). Multi-objective optimization of continuous casting billet based on ant colony system algorithm. In 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application (Vol. 1, pp. 262-266). IEEE Publishing. https://doi.org/10.1109/PACIIA.2008.28

  • Jian, X., & Weng, Z. (2020). A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models. Optik, 203, Article 164041. https://doi.org/10.1016/j.ijleo.2019.164041

  • Khosravi, H., Eslami-Farsani, R., & Askari-Paykani, M. (2014). Modeling and optimization of cooling slope process parameters for semi-solid casting of A356 Al alloy. Transactions of Nonferrous Metals Society of China (English Edition), 24(4), 961-968. https://doi.org/10.1016/S1003-6326(14)63149-6

  • Kor, J., Chen, X., Sun, Z., & Hu, H. (2011). Casting design through multi-objective optimization. IFAC Proceedings, 44(1), 11642-11647. https://doi.org/10.3182/20110828-6-IT-1002.01726

  • Kumar, S., Jangir, P., Tejani, G. G., Premkumar, M., & Alhelou, H. H. (2021). MOPGO: A new physics-based multi-objective plasma generation optimizer for solving structural optimization problems. IEEE Access, 9, 84982-85016. https://doi.org/10.1109/ACCESS.2021.3087739

  • Kumar, S. D., Mandal, A., & Chakraborty, M. (2014). Cooling slope casting process of semi-solid aluminum alloys: A review. International Journal of Engineering Research & Technology (IJERT), 3(7), 269-283.

  • Kumar, S. B., Idris, M. H., Farah, N. F. N., & Kamal, R. (2013). Investigation of mechanical properties of AZ91D magnesium alloy by gravity die casting process. Jurnal Mekanikal, 36, 1-9.

  • Li, K., Chen, R., Fu, G., & Yao, X. (2019). Two-archive evolutionary algorithm for constrained multiobjective optimization. IEEE Transactions on Evolutionary Computation, 23(2), 303-315. https://doi.org/10.1109/TEVC.2018.2855411

  • Li, S., Fan, X., Huang, H., & Cao, Y. (2020). Multi-objective optimization of injection molding parameters, based on the Gkriging-NSGA-vague method. Journal of Applied Polymer Science, 137(19), Article 48659. https://doi.org/10.1002/app.48659

  • Mishra, P., & Sahu, A. (2018). Manufacturing process optimization using pso by optimal machine combination on cluster level. Materials Today: Proceedings, 5(9), 19200-19208. https://doi.org/10.1016/j.matpr.2018.06.275

  • Nafisi, S., & Ghomashchi, R. (2019). Semi-solid processing of alloys and composites. Metals, 9(5), Article 526. https://doi.org/10.3390/met9050526

  • Narayanan, R. C., Ganesh, N., Čep, R., Jangir, P., Chohan, J. S., & Kalita, K. (2023). A novel many-objective sine-cosine algorithm (MaOSCA) for engineering applications. Mathematics, 11(10), Article 2301. https://doi.org/10.3390/math11102301

  • Onifade, M., Lawal, A. I., Aladejare, A. E., Bada, S., & Idris, M. A. (2022). Prediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysis. International Journal of Coal Preparation and Utilization, 42(4), 1170-1184. https://doi.org/10.1080/19392699.2019.1695605

  • Pandya, S. B., Visumathi, J., Mahdal, M., Mahanta, T. K., & Jangir, P. (2022). A novel MOGNDO algorithm for security-constrained optimal power flow problems. Electronics, 11(22), Article 3825. https://doi.org/10.3390/electronics11223825

  • Patel, G. C. M., Krishna, P., Vundavilli, P. R., & Parappagoudar, M. B. (2016a). Multi-objective optimization of squeeze casting process using genetic algorithm and particle swarm optimization. Archives of Foundry Engineering, 16(3), 172-186. https://doi.org/10.1515/afe-2016-0073

  • Patel, G. C. M., Krishna, P., & Parappagoudar, M. B. (2016b). Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm. Australian Journal of Mechanical Engineering, 14(3), 182-198. https://doi.org/10.1080/14484846.2015.1093231

  • Patel, G. C. M., Krishna, P., & Parappagoudar, M. B. (2015). Modelling of squeeze casting process using design of experiments and response surface methodology. International Journal of Cast Metals Research, 28(3), 167-180. https://doi.org/10.1179/1743133614Y.0000000144

  • Premkumar, M., Jangir, P., Sowmya, R., Elavarasan, R. M., & Kumar, B. S. (2021). Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules. ISA Transactions, 116, 139-166. https://doi.org/10.1016/j.isatra.2021.01.045

  • Premkumar, M., Jangir, P., Kumar, B. S., Alqudah, M. A., & Nisar, K. S. (2022). Multi-objective grey wolf optimization algorithm for solving real-world BLDC motor design problem. Computers, Materials & Continua, 70(2), 2435-2452. https://doi.org/10.32604/cmc.2022.016488

  • Raed, A. Z., Mohammed, Z., Al, A., Awadallah, M. A., Doush, I. A., & Assaleh, K. (2022). An intensive and comprehensive overview of JAYA Algorithm, its versions and applications. Archives of Computational Methods in Engineering, 29(2), 763-792. https://doi.org/10.1007/s11831-021-09585-8

  • Rao, R. V. (2011). Advanced modeling and optimization of manufacturing processes. Springer. https://doi.org/10.1007/978-0-85729-015-1

  • Rao, R. V., Rai, D. P., Ramkumar, J., & Balic, J. (2016). A new multi-objective Jaya algorithm for optimization of modern machining processes. Advances in Production Engineering & Management, 11(4), 271-286. http://dx.doi.org/10.14743/apem2016.4.226

  • Rao, R. Venkata, Keesari, H. S., Oclon, P., & Taler, J. (2019). Improved multi-objective Jaya optimization algorithm for a solar dish Stirling engine. Journal of Renewable and Sustainable Energy, 11(2), Article 025903. https://doi.org/10.1063/1.5083142

  • Rao, R. V. (2018). Jaya: An advanced optimization algorithm and its engineering applications. Springer. https://doi.org/10.1007/978-3-319-78922-4

  • Said, R. M., Sallehuddin, R., Mohd Radzi, N. H., & Mohd Kamal, M. R. (2021). Jaya algorithm for optimization of cooling slope casting process parameters. Journal of Physics: Conference Series, 2129(1), Article 012042. https://doi.org/10.1088/1742-6596/2129/1/012042

  • Singh, A., Singh, R. M., Kumar, A. R. S., Kumar, A., Hanwat, S., & Tripathi, V. K. (2021). Evaluation of soft computing and regression-based techniques for the estimation of evaporation. Journal of Water and Climate Change, 12(1), 32-43. https://doi.org/10.2166/wcc.2019.101

  • Son, Y. G., Jung, S. S., Park, Y. H., & Lee, Y. C. (2021). Effect of semi-solid processing on the microstructure and mechanical properties of aluminum alloy chips with eutectic Mg2Si intermetallics. Metals, 11(9), Article 1414. https://doi.org/10.3390/met11091414

  • Tanvir, M. H., Hussain, A., Rahman, M. M. T., & Ishraq, S, Zishan, K., Rahul, S. T., & Habib, M. A. (2020). Multi-objective optimization of turning operation of stainless steel using a hybrid whale optimization algorithm. Journal of Manufacturing and Materials Processing, 4(3), Article 64. https://doi.org/10.3390/jmmp4030064

  • Tavakolpour-Saleh, A. R., Zare, S. H., & Badjian, H. (2017). Multi-objective optimization of stirling heat engine using gray wolf optimization algorithm. International Journal of Engineering, 30(6), 150-160.

  • Tugiman, T., Thayab, A., Ariani, F., Sitorus, T., Suhandi, S., & Rizki, R. (2019). The effect of cooling slope on mechanical properties of aluminum-8.5wt.% Si alloy produced by gravity casting. In Proceedings of the 2nd Annual Conference of Engineering and Implementation on Vocational Education (ACEIVE 2018) (pp. 1-7). EAI Publishing. https://doi.org/10.4108/eai.3-11-2018.2285718

  • Vinh, L., & Nguyen, N. S. (2020). Parameters extraction of solar cells using modified JAYA algorithm. Optik, 203, Article 164034. https://doi.org/10.1016/j.ijleo.2019.164034

  • Warid, W., Hizam, H., Mariun, N., & Wahab, N. I. A. (2018). A novel quasi-oppositional modified Jaya algorithm for multi-objective optimal power flow solution. Applied Soft Computing, 65, 360-373. https://doi.org/10.1016/j.asoc.2018.01.039

  • Wu, C., & He, Y. (2020). Solving the set-union knapsack problem by a novel hybrid Jaya algorithm. Soft Computing, 24, 1883-1902. https://doi.org/10.1007/s00500-019-04021-3

  • Wu, H., Yang, X., Cao, G., Zhao, L., & Yang, L. (2021). Design and optimisation of die casting process for heavy-duty automatic transmission oil circuit board. International Journal of Cast Metals Research, 31(2), 88-96. https://doi.org/10.1080/13640461.2021.1904673

  • Zamli, K., Alsewari, A., & S. Ahmed, B. (2018). Multi-start jaya algorithm for software module clustering problem. Azerbaijan Journal of High Performance Computing, 1(1), 87-112.

  • Zheng, K., Lin, Y., Chen, W., & Liu, L. (2020). Numerical simulation and optimization of casting process of copper alloy water-meter shell. Advances in Mechanical Engineering, 12(5), 1-12. https://doi.org/10.1177/1687814020923450

  • Zhenghao, Li, J., & Hao, H. (2020). Non-probabilistic method to consider uncertainties in structural damage identification based on hybrid Jaya and tree seeds algorithm. Engineering Structures, 220, Article 110925. https://doi.org/10.1016/j.engstruct.2020.110925

  • Zhou, D., Kang, Z., Yang, C., Su, X., & Chen, C. C. (2022). A novel approach to model and optimize qualities of castings produced by differential pressure casting process. International Journal of Metalcasting, 16, 259-277. https://doi.org/10.1007/s40962-021-00596-6

  • Zitzler, E., Deb, K., & Thiele, L. (1999). Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 8(2), 173-195. https://doi.org/10.1162/106365600568202

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles