e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 46 (3) Aug. 2023 / JTAS-2654-2022


Comparative Study of Thermal Pre-treatment on the Extraction, Antioxidant, Fatty Acid Profile, and Physicochemical Properties of Inca Inchi Seed Oil

Jeffi Christopher, Chin Ping Tan, Helmi Wasoh and Oi Ming Lai

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 3, August 2023


Keywords: Fatty acid profile, Inca Inchi oil, physicochemical properties, pre-treatment, oil extraction

Published on: 30 August 2023

Inca Inchi oil, an edible oil with high amounts of polyunsaturated fatty acids such as omega 3 and omega 6 fatty acids, has a wide range of applications in therapeutic, food, and pharmaceutical industries. Increasing its oil yield during oil extraction is important due to its high value. However, conventional techniques such as screw press extraction pose a limitation in terms of oil yield. Thus, in this study, the seeds were pre-treated in a microwave and hot air oven prior to oil extraction. The effects of this pre-treatment on the oil yield, fatty acid profile, antioxidant profile, and physicochemical properties were compared. Microwave treatment (4 min) was found to have the highest oil yield (43.39%) compared to control (37.76%). The proximate analysis revealed that the protein content in the oil meal was high (51–60%) compared to oil seed (24.2%), indicating that it has potential application to be developed into plant-based protein foods. The fatty acid profile indicates that the oil had high omega 3 (49%) and omega 6 (37%) fatty acids. The free fatty acids and peroxide values of the pre-treated oil samples were less than 1% and 10 meq O2/kg oil, respectively, compared to the control (1%), while the iodine value was high due to double bonds. The 2,2-diphenyl-1-1picrylhydrazyl and 2,2´-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid study shows that the oil has good radical scavenging activity (70 and 90%), which shows the oil’s potential in functional food applications.

  • Akanni, M. S., Adekunle, A. S., & Oluyemi, E. A. (2005). Physicochemical properties of some non-conventional oilseeds. Journal of Food Technology, 3(2), 177–181.

  • Alayón, A. N., Avila, J. G. O., & Jiménez, I. E. (2018). Carbohydrate metabolism and gene expression of sirtuin 1 in healthy subjects after Sacha inchi oil supplementation: A randomized trial. Food and Function, 9(3), 1570–1577.

  • Alayón, A. N., Ortega Ávila, J. G., & Echeverri Jiménez, I. (2019). Metabolic status is related to the effects of adding of sacha inchi (Plukenetia volubilis L.) oil on postprandial inflammation and lipid profile: Randomized, crossover clinical trial. Journal of Food Biochemistry, 43(2), e12703.

  • Alemu, B., Pu, Z., Debele, G., Goshu, A., Jida, M., Abdikadir, A., Ahmed, A., Dadi, H., Tesfaye, K., Tessema, A., & Chunhong, M. (2022). Proximate analysis of endangered evergreen leguminous shrub Yeheb-nut (Cordeauxia edulis Hemsl.) reveals high content of carbohydrate than protein. Measurement: Food, 7, 100051.

  • Anjum, F., Anwar, F., Jamil, A., & Iqbal, M. (2006). Microwave roasting effects on the physico-chemical composition and oxidative stability of sunflower seed oil. Journal of the American Oil Chemists’ Society, 83(9), 777–784.

  • Arab, R., Casal, S., Pinho, T., Cruz, R., Freidja, M. L., Lorenzo, J. M., Hano, C., Madani, K., & Boulekbache-Makhlouf, L. (2022). Effects of seed roasting temperature on sesame oil fatty acid composition, lignan, sterol and tocopherol contents, oxidative stability and antioxidant potential for food applications. Molecules, 27(14), 4508.

  • Azadmard-Damirchi, S., Habibi-Nodeh, F., Hesari, J., Nemati, M., & Achachlouei, B. F. (2010). Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chemistry, 121(4), 1211–1215.

  • Baba, S. A., & Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science, 9(4), 449–454.

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.

  • Bueno-Borges, L. B., Sartim, M. A., Gil, C. C., Sampaio, S. V., Rodrigues, P. H. V., & Regitano-d’Arce, M. A. B. (2018). Sacha inchi seeds from sub-tropical cultivation: Effects of roasting on antinutrients, antioxidant capacity and oxidative stability. Journal of Food Science and Technology, 55(10), 4159–4166.

  • Bussmann, R. W., Téllez, C., & Glenn, A. (2009). Plukenetia huayllabambana sp. Nov. (Euphorbiaceae) from the upper Amazon of Peru. Nordic Journal of Botany, 27(4), 313–315.

  • Capurso, C., Massaro, M., Scoditti, E., Vendemiale, G., & Capurso, A. (2014). Vascular effects of the Mediterranean diet Part I: Anti-hypertensive and anti-thrombotic effects. Vascular Pharmacology, 63(3), 118–126.

  • Cheong, A. M., Tan, C. P., & Nyam, K. L. (2018). Stability of bioactive compounds and antioxidant activities of kenaf seed oil-in-water nanoemulsions under different storage temperatures. Journal of Food Science, 83(10), 2457–2465.

  • Chirinos, R., Necochea, O., Pedreschi, R., & Campos, D. (2016). Sacha inchi (Plukenetia volubilis L.) shell: An alternative source of phenolic compounds and antioxidants. International Journal of Food Science and Technology, 51(4), 986–993.

  • Chirinos, R., Zuloeta, G., Pedreschi, R., Mignolet, E., Larondelle, Y., & Campos, D. (2013). Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry, 141(3), 1732–1739.

  • Ciftci, O. N., Przybylski, R., & Rudzińska, M. (2012). Lipid components of flax, perilla, and chia seeds. European Journal of Lipid Science and Technology, 114(7), 794–800.

  • Cisneros, F. H., Paredes, D., Arana, A., & Cisneros-Zevallos, L. (2014). Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.). Journal of Agricultural and Food Chemistry, 62(22), 5191–5197.

  • Conforti, F., Statti, G., Uzunov, D., & Menichini, F. (2006). Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biological and Pharmaceutical Bulletin, 29(10), 2056–2064.

  • da Silva Soares, B., Siqueira, R. P., de Carvalho, M. G., Vicente, J., & Garcia-Rojas, E. E. (2019). Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chemistry, 298, 125045.

  • Danlami, J. M., Arsad, A., Zaini, M. A. A., & Sulaiman, H. (2014). A comparative study of various oil extraction techniques from plants. Reviews in Chemical Engineering, 30(6), 605–626.

  • Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654–660.

  • Esuoso, K. O., & Odetokun, S. M. (1995). Proximate chemical composition and possible industrial utilization of Bliphia sapida seed and seed oils. Rivista Italiana delle Sostanze, 72(7), 311–313.

  • Farag, R. S., Hewedi, F. M., Abu-Raiia, S. H., & El-Baroty, G. S. (1992). Comparative study on the deterioration of oils by microwave and conventional heating. Journal of Food Protection, 55(9), 722–727.

  • Fathi-Achachlouei, B., Azadmard-Damirchi, S., Zahedi, Y., & Shaddel, R. (2019). Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Industrial Crops and Products, 128, 527–533.

  • Ferrari, C., Angiuli, M., Tombari, E., Righetti, M. C., Matteoli, E., & Salvetti, G. (2007). Promoting calorimetry for olive oil authentication. Thermochimica Acta, 459(1), 58–63.

  • Firestone, D. (2009). Official methods and recommended practices of the AOCS (6th ed.). American Oil Chemists’ Society.

  • Floegel, A., Kim, D.-O., Chung, S.-J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24(7), 1043–1048.

  • Follegatti-Romero, L. A., Piantino, C. R., Grimaldi, R., & Cabral, F. A. (2009). Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. The Journal of Supercritical Fluids, 49(3), 323–329.

  • Garmendia, F., Pando, R., & Ronceros, G. (2011). Efecto del aceite de sacha inchi (Plukenetia volúbilis L.) sobre el perfil lipídico en pacientes con hiperlipoproteinemia [Effect of sacha inchi oil (Plukenetia volúbilis L.) on the lipid profile of patients with hyperlipoproteinemia]. Revista Peruana de Medicina Experimental y Salud Pública, 28(4), 628-632.

  • Gillespie, L. J. (1993). A synopsis of neotropical Plukenetia (Euphorbiaceae) including two new species. Systematic Botany, 18(4), 575–592.

  • Glick, N. R., & Fischer, M. H. (2013). The role of essential fatty acids in human health. Journal of Evidence-Based Complementary and Alternative Medicine, 18(4), 268–289.

  • Gonzalez-Aspajo, G., Belkhelfa, H., Haddioui-Hbabi, L., Bourdy, G., & Deharo, E. (2015). Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. Journal of Ethnopharmacology, 171, 330–334.

  • Guillén, M. D., Ruiz, A., Cabo, N., Chirinos, R., & Pascual, G. (2003). Characterization of sacha inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. Journal of the American Oil Chemists’ Society, 80(8), 755–762.

  • Gutfinger, T. (1981). Polyphenols in olive oils. Journal of the American Oil Chemists’ Society, 58(11), 966–968.

  • Gutiérrez, L.-F., Rosada, L. M., & Jiménez, Á. (2011). Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas y Aceites, 62(1), 76–83.

  • Gutiérrez, L.-F., Quiñones-Segura, Y., Sanchez-Reinoso, Z., Díaz, D. L., & Abril, J. I. (2017). Physicochemical properties of oils extracted from γ-irradiated Sacha Inchi (Plukenetia volubilis L.) seeds. Food Chemistry, 237, 581–587.

  • Gutiérrez, L.-F., Sanchez-Reinoso, Z., & Quiñones-Segura, Y. (2019). Effects of dehulling Sacha Inchi (Plukenetia volubilis L.) seeds on the physicochemical and sensory properties of oils extracted by means of cold pressing. Journal of the American Oil Chemists’ Society, 96(11), 1187–1195.

  • Haile, M., Duguma, H. T., Chameno, G., & Kuyu, C. G. (2019). Effects of location and extraction solvent on physico chemical properties of Moringa stenopetala seed oil. Heliyon, 5(11), e02781.

  • Hamaker, B. R., Valles, C., Gilman, R., Hardmeier, R. M., Clark, D., Garcia, H. H., Gonzales, A. E., Kohlstad, I., Castro, M., Valdivia, R., Rodriguez, T., & Lescano, M. (1992). Amino acid and fatty acid profiles of the Inca peanut (Plukenetia volubilis L.). Cereal Chem, 69(4), 461–463.

  • Horwitz, W., & Latimer, G. W. (Eds.) (2005). Official methods of analysis of AOAC International (18th ed). AOAC International.

  • Jeong, S.-M., Kim, S.-Y., Kim, D.-R., Jo, S.-C., Nam, K. C., Ahn, D. U., & Lee, S.-C. (2004). Effect of heat treatment on the antioxidant activity of extracts from citrus peels. Journal of Agricultural and Food Chemistry, 52(11), 3389–3393.

  • Jung, M. Y., Bock, J. Y., Baik, S. O., Lee, J. H., & Lee, T. K. (1999). Effects of roasting on pyrazine contents and oxidative stability of red pepper seed oil prior to its extraction. Journal of Agricultural and Food Chemistry, 47(4), 1700–1704.

  • Kodahl, N., Frandsen, H. B., Lütken, H., Petersen, I. L., Paredes Andrade, N. J., García-Davila, C., & Sørensen, M. (2022). Lipid composition of the Amazonian ‘Mountain Sacha Inchis’ including Plukenetia carolis-vegae Bussmann, Paniagua & C.Téllez. Scientific Reports, 12, 6450.

  • Kodahl, N., & Sørensen, M. (2021). Sacha Inchi (Plukenetia volubilis L.) is an underutilized crop with a great potential. Agronomy, 11(6), 10666.

  • Lagarda, M. J., García-Llatas, G., & Farré, R. (2006). Analysis of phytosterols in foods. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1486–1496.

  • Lee, Y.-Y., Tang, T.-K., Phuah, E.-T., Karim, N. A. A., Alwi, S. M. M., & Lai, O.-M. (2015). Palm-based medium-and-long-chain triacylglycerol (P-MLCT): Production via enzymatic interesterification and optimization using response surface methodology (RSM). Journal of Food Science and Technology, 52, 685–696.

  • Li, A.-N., Li, S., Zhang, Y.-J., Xu, X.-R., Chen, Y.-M., & Li, H.-B. (2014). Resources and biological activities of natural polyphenols. Nutrients, 6(12), 6020-6047.

  • Liu, L., Sun, Y., Laura, T., Liang, X., Ye, H., & Zeng, X. (2009). Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng. Food Chemistry, 112(1), 35–41.

  • Liu, Q., Xu, Y. K., Zhang, P., Na, Z., Tang, T., & Shi, Y. X. (2014). Chemical composition and oxidative evolution of Sacha Inchi (Plukenetia volubilis L.) oil from Xishuangbanna (China). Grasas y Aceites, 65(1), e012.

  • Lopez-Huertas, E. (2010). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological Research, 61(3), 200–207.

  • Lutterodt, H., Slavin, M., Whent, M., Turner, E., & Yu, L. (2011). Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chemistry, 128(2), 391–399.

  • Maier, T., Schieber, A., Kammerer, D. R., & Carle, R. (2009). Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry, 112(3), 551–559.

  • Marfil, R., Giménez, R., Martínez, O., Bouzas, P. R., Rufián-Henares, J. A., Mesías, M., & Cabrera-Vique, C. (2011). Determination of polyphenols, tocopherols, and antioxidant capacity in virgin argan oil (Argania spinosa, Skeels). European Journal of Lipid Science and Technology, 113(7), 886–893.

  • Mahesar, S. A., Sherazi, S. T. H., Khaskheli, A. R., Kandhro, A. A., & Uddin, S. (2014). Analytical approaches for the assessment of free fatty acids in oils and fats. Analytical Methods, 6(14), 4956–4963.

  • Maurer, N. E., Hatta-Sakoda, B., Pascual-Chagman, G., & Rodriguez-Saona, L. E. (2012). Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chemistry, 134(2), 1173–1180.

  • Mazaheri, Y., Torbati, M., Azadmard-Damirchi, S., & Savage, G. P. (2019). Effect of roasting and microwave pre-treatments of Nigella sativa L. seeds on lipase activity and the quality of the oil. Food Chemistry, 274, 480–486.

  • McKevith, B. (2005). Nutritional aspects of oilseeds. Nutrition Bulletin, 30(1), 13–26.

  • Medina-Mendoza, M., Rodriguez-Pérez, R. J., Rojas-Ocampo, E., Torrejón-Valqui, L., Fernández-Jeri, A. B., Idrogo-Vásquez, G., Cayo-Colca, I. S., & Castro-Alayo, E. M. (2021). Rheological, bioactive properties and sensory preferences of dark chocolates with partial incorporation of Sacha Inchi (Plukenetia volubilis L.) oil. Heliyon, 7(2), e06154.

  • Moreau, R. A., Whitaker, B. D., & Hicks, K. B. (2002). Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research, 41(6), 457–500.

  • Muangrat, R., Veeraphong, P., & Chantee, N. (2018). Screw press extraction of Sacha inchi seeds: Oil yield and its chemical composition and antioxidant properties. Journal of Food Processing and Preservation, 42(6), e13635.

  • Muhammad Anjum, F., Nadeem, M., Issa Khan, M., & Hussain, S. (2012). Nutritional and therapeutic potential of sunflower seeds: A review. British Food Journal, 114(4), 544–552.

  • Mwaurah, P. W., Kumar, S., Kumar, N., Attkan, A. K., Panghal, A., Singh, V. K., & Garg, M. K. (2020). Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Comprehensive Reviews in Food Science and Food Safety, 19(1), 3–20.

  • O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511–1521.

  • Onyeike, E. N., & Acheru, G. N. (2002). Chemical composition of selected Nigerian oil seeds and physicochemical properties of the oil extracts. Food Chemistry, 77(4), 431–437.

  • Pearson, G., & Carr, J. R. (1976). Lupin-seed meal (Lupinus angustifolius cv. Uniwhite) as a protein supplement to barley-based diets for growing pigs. Animal Feed Science and Technology, 1(4), 631–642.

  • Rękas, A., Ścibisz, I., Siger, A., & Wroniak, M. (2017). The effect of microwave pre-treatment of seeds on the stability and degradation kinetics of phenolic compounds in rapeseed oil during long-term storage. Food Chemistry, 222, 43-52.

  • Roger, A. B., Rebecca, R. A., Georges, A., & Mathias, I. O. (2010). Chemical characterization of oil form germinated nuts of several coconut cultivars (Cocos nucifera L.). European Journal of Scientific Research, 391(4), 514–522.

  • Saurabh, T., Patnaik, M., Bhagt, S. L., & Renge, V. (2011). Epoxidation of vegetable oils: A review. International Journal of Advanced Engineering Technology, 2, 491–501.

  • Sayyar, S., Abidin, Z. Z., Yunus, R., & Muhammad, A. (2009). Extraction of oil from Jatropha seeds-optimization and kinetics. American Journal of Applied Sciences, 6(7), 1390–1395.

  • Shahidi, F. (2005). Bailey’s industrial oil and fat products, industrial and nonedible Products from oils and fats. John Wiley & Sons.

  • Sinclair, A. J., Attar-Bashi, N. M., & Li, D. (2002). What is the role of α-linolenic acid for mammals? Lipids, 37(12), 1113–1123.

  • Siregar, A. N., Ghani, J. A., Haron, C. H. C., Rizal, M., Yaakob, Z., & Kamarudin, S. K. (2016). Comparison of oil press for jatropha oil - A review. Research in Agricultural Engineering, 61(1), 1–13.

  • Tachakittirungrod, S., Okonogi, S., & Chowwanapoonpohn, S. (2007). Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chemistry, 103(2), 381–388.

  • Tan, C. P., & Che Man, Y. B. (2002). Differential scanning calorimetric analysis of palm oil, palm oil-based products and coconut oil: Effects of scanning rate variation. Food Chemistry, 76(1), 89–102.

  • Torres Sánchez, E. G., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2021). Sacha Inchi oil press-cake: Physicochemical characteristics, food-related applications and biological activity. Food Reviews International, 39(1), 1–12.

  • Uquiche, E., Jeréz, M., & Ortíz, J. (2008). Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innovative Food Science and Emerging Technologies, 9(4), 495–500.

  • Vicente, J., de Carvalho, M. G., & Garcia-Rojas, E. E. (2015). Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC–FID. Food Chemistry, 181, 215–221.

  • Viuda-Martos, M., El Gendy, A. E.-N. G. S., Sendra, E., Fernández-López, J., Abd El Razik, K. A., Omer, E. A., & Pérez-Alvarez, J. A. (2010). Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants. Journal of Agricultural and Food Chemistry, 58(16), 9063–9070.

  • Xuan, T. D., Gangqiang, G., Minh, T. N., Quy, T. N., & Khanh, T. D. (2018). An overview of chemical profiles, antioxidant and antimicrobial activities of commercial vegetable edible oils marketed in Japan. Foods, 7(2), 21.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Related Articles