e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (2) May. 2024 / JTAS-2870-2023


Economically Imperative Ananas comosus Diseases, Status, and Its Control Measures Documented in Producing Countries

Intan Sakinah Mohd Anuar, Syd Ali Nusaibah and Zaiton Sapak

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 2, May 2024


Keywords: Economy, pineapple, plant disease, plant pathogens

Published on: 30 May 2024

Ananas comosus, commonly known as pineapple, is a fruit with a large potential market as a commodity and commercial fruit. Numerous pests and diseases affect pineapple, directly or indirectly, by lowering the quality and quantity. The fungal causative agents, namely Fusarium ananatum and Thalaromyces stolii (previously named Penicillium funiculosum), cause fruitlet core rot (FCR) and fusariosis by Fusarium guttiforme. Bacteria heart rot (BHR) is an infection by Erwinia chrysanthemi, newly known as Dickeya zeae. Nevertheless, the mealybug wilt of pineapple (MWP) is another pineapple treat to susceptible pineapple varieties caused by pineapple mealybug wilt-associated viruses (PMWaVs). Other diseases include destruction caused by pathogenic nematodes. This review discusses the status of these diseases and the control measures that greatly affect the economy of pineapple-producing countries due to the economic significance of these crops. Growers need up-to-date information on the identity of the diseases that affect pineapple crops in the various countries that produce them to effectively manage the diseases in the field.

  • Aeny, T. N., Suharjo, R., Ginting, C., Hapsoro, D., & Niswati, A. (2020). Characterization and host range assessment of Dickeya zeae associated with pineapple soft rot disease in east Lampung, Indonesia. Biodiversitas, 21(2), 587–595.

  • Ajayi, A. M., Coker, A. I., Oyebanjo, O. T., Adebanjo, I. M., & Ademowo, O. G. (2022). Ananas comosus (L) Merrill (pineapple) fruit peel extract demonstrates antimalarial, anti-nociceptive and anti-inflammatory activities in experimental models. Journal of Ethnopharmacology, 282, 114576.

  • Alejo Jeronimo, M., Manuel Arevalo de la Cruz, E., Brito-Vega, H., Gomez-Vazquez, A., Manuel Salaya-Dominguez, J., & Gomez-Mendez, E. (2023). The production and marketing issues of pineapple (Ananas comosus) under humid tropical conditions in the state of Tabasco and Way-out. In M. S. Khan (Ed.), Tropical plant species and technological interventions for improvement. IntechOpen.

  • Araya, M. (2019). Chemical control of mealybugs on pineapples. Acta Horticulturae, 1239, 147–152.

  • Asare‐Bediako, E., Nyarko, J., & van der Puije, G. C. (2020). First report of Pineapple mealybug wilt associated virus‐2 infecting pineapple in Ghana. New Disease Reports, 41(1), 9.

  • Barral, B., Chillet, M., Léchaudel, M., Lartaud, M., Verdeil, J. L., Conéjéro, G., & Schorr-Galindo, S. (2019). An imaging approach to identify mechanisms of resistance to pineapple fruitlet core rot. Frontiers in Plant Science, 10, 1065.

  • Benzonan, N. C., Dalisay, L. C. S., Reponte, K. C. C., Mapanao, C. P., Alvarez, L. V, Rendon, A. O., & Zurbano, L. Y. (2021). Plant-parasitic nematodes associated with pineapple (Ananas comosus) in selected provinces in Luzon, Philippines. European Journal of Molecular and Clinical Medicine, 8(2), 945–957.

  • Cano-Reinoso, D. M., Soesanto, L., Kharisun., & Wibowo, C. (2021). Fruit collapse and heart rot disease in pineapple: Pathogen characterization, ultrastructure infections of plant and cell mechanism resistance. Biodiversitas, 22(5), 2477–2488.

  • Carnielli-Queiroz, L., Fernandes, P. M. B., Fernandes, A. A. R., & Ventura, J. A. (2019). A rapid and reliable method for molecular detection of Fusarium guttiforme, the etiological agent of pineapple fusariosis. Brazilian Archives of Biology and Technology, 62, e19180591.

  • Chaudhary, V., Kumar, V., Sunil., Vaishali., Singh, K., Kumar, R., & Kumar, V. (2019). Pineapple (Ananas cosmosus) product processing: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 4645–4645.

  • Chillet, M., Hoareau, A., Hoarau, M., & Minier, J. (2020). Potential use of essentials oils to control fruitlet core rot (FCR) in pineapple (Queen Victoria variety) in Reunion Island. American Journal of Plant Sciences, 11, 1671–1681.

  • Dey, K. K., Green, J. C., Melzer, M., Borth, W., & Hu, J. S. (2018). Mealybug wilt of pineapple and associated viruses. Horticulturae, 4(4), 52.

  • Food and Agriculture Organization of the United Nations. (2021). Major tropical fruits: Market review 2020. FAO.

  • Goncalves, M. V., Ferreira, L. L., Pereira, A. I. A., & Curvelo, C. R. D. S. (2021). Management of Fusarium subglutinans in pineapple using garlic, ginger and denim extract. Revista Brasileira de Plantas Medicinais, 23(1), 12–19.

  • Green, J. C., Rwahnih, M. A., Olmedo-Velarde, A., Melzer, M. J., Hamim, I., Borth, W. B., Brower, T. M., Wall, M., & Hu, J. S. (2020). Further genomic characterization of pineapple mealybug wilt-associated viruses using high-throughput sequencing. Tropical Plant Pathology, 45, 64-72.

  • Gungoosingh-Bunwaree, A., Maudarbaccus, F., Knierim, D., Margaria, P., Winter, S., & Menzel, W. (2021). First report of Pineapple mealybug wilt-associated virus-1 and -2 associated with mealybug wilt disease of pineapple in Mauritius. New Disease Reports, 44(1), e12037.

  • Habotta, O. A., Dawood, M. A. O., Kari, Z. A., Tapingkae, W., & Doan, H. V. (2022). Antioxidative and immunostimulant potential of fruit derived biomolecules in aquaculture. Fish and Shellfish Immunology, 130, 317–322.

  • Hernández-Rodrıguez, L., Ramos-González, P. L., Sistachs-Vega, V., Zamora-Rodrıguez, V., Batista-Le Riverend, L., Ramos-Leal, M., Peña-Bárzaga, I., & Llanes-Alvarez, Y. (2019). The viral complex associated with mealybug wilt disease of pineapple in Cuba. Acta Horticulturae, 1239, 203–212.

  • Hutahayan, A. J., Tantawi, A. R., Tobing, M. C., & Lisnawita. (2021). Pineapple mealybug wilt-associated virus (PMWaV) on Sipahutar pineapple, in North Tapanuli, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 782, No. 4, p. 042062). IOP Publishing.

  • Hutahayan, A. J., Tantawi, A. R., Tobing, M. C., & Lisnawita. (2022). Survey and distribution of Pineapple Wilt Mealybug Wilt-associated Virus (PMWaV) on pineapple plants in North Tapanuli, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 977, No. 1, p. 012037). IOP Publishing.

  • Ibrahim, N. F., Mohd, M. H., Nor, N. M. I. M., & Zakaria, L. (2020). Mycotoxigenic potential of Fusarium species associated with pineapple diseases. Archives of Phytopathology and Plant Protection, 53(5–6), 217–229.

  • Larrea-Sarmiento, A., Olmedo-Velarde, A., Wang, X., Borth, W., Matsumoto, T. K., Suzuki, J. Y., Wall, M. M., Melzer, M., & Hu, J. (2021). A novel ampelovirus associated with mealybug wilt of pineapple (Ananas comosus). Virus Genes, 57, 464–468.

  • Malaysia’s pineapple export shows an upward trend from 2016-2020. (2022, April). Bernama.

  • Masdek, H. N., Ismail, A. B., Zulkifli, M., & Malip, M. (2007). Paratylenchus sp. associated with pineapple yield decline. Journal of Tropical Agriculture and Food Science, 35(1), 191-199.

  • Moreno, I., Rodríguez-Arévalo, K. A., Tarazona-Velásquez, R., & Kondo, T. (2023). Occurrence and distribution of pineapple mealybug wilt-associated viruses (PMWaVs) in MD2 pineapple fields in the Valle del Cauca Department, Colombia. Tropical Plant Pathology, 48, 217–225.

  • Muhamad, M. Z., Shamsudin, M. N., Kamarulzaman, N. H., Nawi, N. M., & Laham, J. (2022). Investigating yield variability and technical efficiency of smallholders pineapple production in Johor. Sustainability, 14(22), 15410.

  • Nor, A. A. M., Zainol, R., Abdullah, R., Jaffar, N. S., Rasid, M. Z. A., Laboh, R., Shafawi, N. A., & Aziz, N. B. A. (2019). Dissemination pattern of bacterial heart rot (BHR) disease and screening of the disease resistance among commercial pineapple varieties in Malaysia. Malaysian Journal of Microbiology, 15(4), 346–350.

  • Norwegian Institute of Bioeconomy Research. (2021, May 10). Plant parasitic nematodes harm pineapple crop yields in Kenya.

  • Oculi, J., Bua, B., & Ocwa, A. (2020). Reactions of pineapple cultivars to pineapple heart rot disease in central Uganda. Crop Protection, 135, 105213.

  • Pérez-Rodríguez, J., Pekas, A., Tena, A., & Wäckers, F. L. (2021). Sugar provisioning for ants enhances biological control of mealybugs in citrus. Biological Control, 157, 104573.

  • Petty, G. J., Tustin, H. A., & Dicks, H. M. (2005). Control of black spot disease fruitlet core rot in queen pineapple with integrated mealybug, pineapple fruit mite and fungus control programmes. Acta Horticulturae, 702, 143-149.

  • Rabie, E. C. (2017). Nematode pests of pineapple. In H. Fourie, V. Spaull, R. Jones, M. Daneel, & D. De Waele (Eds.), Nematology in South Africa: A view from the 21st century (pp. 395-407). Springer.

  • Sapak, Z., Mohd Faisol Mahadeven, A. N., Nurul Farhana, M. H., Norsahira, S., & Mohd Zafri, A. W. (2021). A review of common diseases of pineapple: The causal pathogens, disease symptoms, and available control measures. Food Research, 5(S4), 1–14.

  • Sidik, S., & Sapak, Z. (2021). Evaluation of selected chemical pesticides for controlling bacterial heart rot disease in pineapples variety MD2. In IOP Conference Series: Earth and Environmental Science (Vol. 757, No. 1, p. 012072). IOP Publishing.

  • Soler, A. (2019). Pineapple cultivation under agro-ecological management with biotechnology approaches. Acta Horticulturae, 1239, 65–75.

  • Soler, A., Marie-Alphonsine, P.-A., Quénéhervé, P., Prin, Y., Sanguin, H., Tisseyre, P., Daumur, R., Pochat, C., Dorey, E., Gonzalez Rodriguez, R., Portal, N., & Smith-Ravin, J. (2021). Field management of Rotylenchulus reniformis on pineapple combining crop rotation, chemical-mediated induced resistance and endophytic bacterial inoculation. Crop Protection, 141, 105446.

  • Sukri, S. A. M., Andu, Y., Sarijan, S., Khalid, H.-N. M., Kari, Z. A., Harun, H. C., Rusli, N. D., Mat, K., Khalif, R. I. A. R., Wei, L. S., Rahman, M. M., Hakim, A. H., Lokman, N. H. N., Hamid, N. K. A., Khoo, M. I., & Doan, H. V. (2023). Pineapple waste in animal feed: A review of nutritional potential, impact and prospects. Annals of Animal Science, 23(2), 339-352.

  • Tanimola, A. A., Olotu, O., & Asimiea, A. O. (2021). Occurrence, diversity and abundance of nematode pests of pineapple (Ananas comosus) in two local government areas of Rivers State, Nigeria. Journal of Applied Sciences and Environmental Management, 25(4), 665-675.

  • Veléz-Negrón, Y. I., Simbaña-Carrera, L. L., Soto-Ramos, C. M., Medina, O. H., Dinkel, E., Hardy, C., Rivera-Vargas, L. I., & Ramos-Sepúlved, L. (2023). First report of bacterial pineapple heart rot caused by Dickeya zeae in Puerto Rico. Plant Disease, 107(1), 210.

  • Vignassa, M., Meile, J. C., Chiroleu, F., Soria, C., Leneveu-Jenvrin, C., Schorr-Galindo, S., & Chillet, M. (2021). Pineapple mycobiome related to fruitlet core rot occurrence and the influence of fungal species dispersion patterns. Journal of Fungi, 7(3), 175.

  • Young, A. J., Pathania, N., Manners, A., & Pegg, K. G. (2022). Heart rot of Australian pineapples caused by Dickeya zeae. Australasian Plant Pathology, 51, 525–533.

  • Zakaria, L. (2023). Fusarium species associated with diseases of major tropical fruit crops. Horticulturae, 9(3), 322.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Related Articles