Home / Pre-Press / JST(S)-0605-2023

 

C-Slot Circular Polarized Antenna for Hybrid Energy Harvesting and Wireless Sensing

Irfan Mujahidin, Sidiq Syamsul Hidayat, Muhamad Cahyo Ardi Prabowo and Akio Kitagawa

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.32.3.24

Keywords: CP antenna, hybrid energy harvesting, wireless sensing

Published: 2024-04-04

This paper presents a new hybrid energy harvesting on electromagnetic solar for wireless energy harvesting of ambient from sensors of low-power devices. The axial ratio (AR) requirements produce Left-Hand Circular Polarization (LHCP) and Right-Hand Circular Polarization (RHCP) and simultaneously produce a 90-degree phase difference during energy harvesting, adopting a new design in designing a dual-feed broadband circular polarized (CP) antenna. To get the frequency band 2.3–2.4 GHz, we propose a C-Slot antenna with a circular patch dual feed. To estimate the diversity of the phase and magnitude output of the feed configuration under AR value, we used a 50 Ohm feed network output of the characteristic analysis for a dual feed CP antenna. An Axial ratio frequency range of less than 3 dB is achieved using polarization analysis with different branch channel couplers. To produce a DC output voltage, a high-frequency rectifier circuit embedded with a thin-film solar cell on the antenna is then connected to two T-junction power divider rectifiers, resulting in a high-efficiency design. A complete system-level analysis will include multiple signal classification methods of powered ambient RF energy using a wireless energy harvesting array that proposes a compact structure and demonstrates optimal configuration. Reliable operation in typical indoor environments indicates a self-contained sensor Node. Therefore, it has significant implications for powering small electronics and wireless sensor applications independently of the IoT Network or real implementation telecommunications industry.

  • Bahhar, C., Baccouche, C., & Sakli, H. (2020a). A novel 5G rectenna for IoT applications. In 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 287–290). IEEE. https://doi.org/10.1109/STA50679.2020.9329349

  • Bahhar, C., Baccouche, C., & Sakli, H. (2020b). Optical RECTENNA for energy harvesting and RF transmission in connected vehicles. In 2020 17th International Multi-Conference on Systems, Signals and Devices (SSD) (pp. 262–266). IEEE. https://doi.org/10.1109/SSD49366.2020.9364243

  • Bai, B., Zhang, Z., Li, X., Sun, C., & Liu, Y. (2020). Integration of microstrip slot array antenna with dye-sensitized solar cells. Sensors 2020, 20(21), 6257. https://doi.org/10.3390/S20216257

  • Bhattacharjee, A., Saha, S., Elangovan, D., & Arunkumar, G. (2018). Naturally clamped, isolated, high-gain DC–DC converter with voltage doubler for battery charging of EVs and PHEVs. In A. Garg, A. K. Bhoi, P. Sanjeevikumar & K. K. Kamani (Eds.) Advances in Power Systems and Energy Management. Lecture Notes in Electrical Engineering (pp. 439-450). Springer. https://doi.org/10.1007/978-981-10-4394-9_44

  • Bougas, I. D., Papadopoulou, M. S., Boursianis, A. D., Kokkinidis, K., & Goudos, S. K. (2021). State-of-the-Art Techniques in RF Energy Harvesting Circuits. Telecom, 2(4), 369-389. MDPI. https://doi.org/10.3390/TELECOM2040022

  • Bulu, I., Caglayan, H., & Ozbay, E. (2006). Designing materials with desired electromagnetic properties. Microwave and Optical Technology Letters, 48(12), 2611–2615. https://doi.org/10.1002/mop.21988

  • Chen, Q., Li, Z., Wang, W., Huang, Z., Liang, X., & Wu, X. (2022). A broadband dual-polarized solar cell phased array antenna. IEEE Transactions on Antennas and Propagation, 70(1), 353–364. https://doi.org/10.1109/TAP.2021.3098520

  • Hernowo, R., Suharjono, A., Supriyo, B., Mukhlisin, M., Hidayat, S. S., Wardihani, E. D., & K.K, S. B. (2022). Power consumption optimization for flood monitoring system using NB-IoT. In 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), (pp. 58-63). IEEE. https://doi.org/10.1109/ISRITI56927.2022.10052891

  • Hidayat, S. S., Kim, B. K., & Ohba, K. (2008). Learning affordance for semantic robots using ontology approach. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 2630–2636). IEEE. https://doi.org/10.1109/IROS.2008.4651193

  • Jones, T. R., Grey, J. P., & Daneshmand, M. (2018). Solar panel integrated circular polarized aperture-coupled patch antenna for cubesat applications. IEEE Antennas and Wireless Propagation Letters, 17(10), 1895–1899. https://doi.org/10.1109/LAWP.2018.2869321

  • Kim, S., Tentzeris, M. M., & Georgiadis, A. (2019). Hybrid printed energy harvesting technology for self-sustainable autonomous sensor application. Sensors, 19(3), 728. https://doi.org/10.3390/s19030728

  • Liu, S., Hou, Y., Xie, W., Schlücker, S., Yan, F., & Lei, D. Y. (2018). Quantitative determination of contribution by enhanced local electric field, antenna-amplified light scattering, and surface energy transfer to the performance of plasmonic organic solar cells. Small, 14(30), 1800870. https://doi.org/10.1002/SMLL.201800870

  • Martinez, V. S., Jimenez, F. M., Baladron, I. P., Bautista, I. M., Ingelmo, J. V., Idoiagabeitia, I. G., Besada, J. L., Iraguen, B. G., Gonzalez, J. M. F., & Mascarello, M. (2020). Steerable high-gain dual-reflector antenna at X-band for solar orbiter. IEEE Transactions on Antennas and Propagation, 68(8), 5784–5795. https://doi.org/10.1109/TAP.2020.2980333

  • Mitani, T., Kawashima, S., & Nishimura, T. (2017). Analysis of voltage doubler behavior of 2.45-GHz voltage doubler-type rectenna. IEEE Transactions on Microwave Theory and Techniques, 65(4), 1051–1057. https://doi.org/10.1109/TMTT.2017.2668413

  • Mujahidin, I., & Kitagawa, A. (2021a). CP antenna with 2 × 4 hybrid coupler for wireless sensing and hybrid RF solar energy harvesting. Sensors, 21(22), 7721. https://doi.org/10.3390/S21227721

  • Mujahidin, I., & Kitagawa, A. (2021b). The novel CPW 2.4 GHz antenna with parallel hybrid electromagnetic solar for IoT energy harvesting and wireless sensors. International Journal of Advanced Computer Science and Applications, 12(8), 393–400. https://doi.org/10.14569/IJACSA.2021.0120845

  • Mujahidin, I., & Kitagawa, A. (2023). Ring slot CP antenna for the hybrid electromagnetic solar energy harvesting and IoT application. TELKOMNIKA (Telecommunication Computing Electronics and Control), 21(2), 290–301. https://doi.org/10.12928/TELKOMNIKA.V21I2.24739

  • Mujahidin, I., Prasetya, D. A., Nachrowie, Sena, S. A., & Arinda, P. S. (2020). Performance tuning of spade card antenna using mean average loss of backpropagation neural network. International Journal of Advanced Computer Science and Applications, 11(2), 639–642. https://doi.org/10.14569/ijacsa.2020.0110280

  • Mustafizur Rahman, M., Krishno Sarkar, A., & Chandra Paul, L. (2020). A voltage dependent meander line dipole antenna with improve read range as a passive RFID tag. In H. S. Saini, R. K. Singh, M. Tariq Beg & J. S. Shambi (Eds.) Innovations in Electronics and Communication Engineering. Lecture Notes in Networks and Systems (Vol. 107, pp. 123–138). Springer. https://doi.org/10.1007/978-981-15-3172-9_14

  • O’Conchubhair, O., McEvoy, P., & Ammann, M. J. (2017). Dye-sensitized solar cell antenna. IEEE Antennas and Wireless Propagation Letters, 16, 352–355. https://doi.org/10.1109/LAWP.2016.2576687

  • Pal, P., Krishnamoorthy, P. A., Rukmani, D. K., Joseph Antony, S., Ocheme, S., Subramanian, U., Elavarasan, R. M., Das, N., & Hasanien, H. M. (2021). Optimal dispatch strategy of virtual power plant for day-ahead market framework. Applied Sciences, 11(9), 3814. https://doi.org/10.3390/APP11093814

  • Prasetya, D. A., & Mujahidin, I. (2020). 2.4 GHz double loop antenna with hybrid branch-line 90-degree coupler for widespread wireless sensor. In 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (pp. 298–302). IEEE. https://doi.org/10.1109/EECCIS49483.2020.9263477

  • Reynaud, C., Duché, D., Palanchoke, U., Dang, F. X., Patrone, L., Le Rouzo, J., Gourgon, C., Charaï, A., Alfonso, C., Lebouin, C., Escoubas, L., & Simon, J. J. (2017). Harvesting light energy with optical rectennas. Advanced Materials - TechConnect Briefs 2017, 2(2017), 45–48.

  • Sonalitha, E., Zubair, A., Molyo, P. D., Asriningtias, S. R., Nurdewanto, B., Prambanan, B. R., & Mujahidin, I. (2020). Combined text mining: Fuzzy clustering for opinion mining on the traditional culture arts work. International Journal of Advanced Computer Science and Applications, 11(8), 294–299. https://doi.org/10.14569/IJACSA.2020.0110838

  • Wagih, M., Weddell, A. S., & Beeby, S. (2021). Powering e-textiles using a single thread radio frequency energy harvesting rectenna. Proceedings, 68(1), 16. https://doi.org/10.3390/PROCEEDINGS2021068016

  • Yan, N., Ji, C., Luo, Y., & Ma, K. (2021). A high gain solar cell aperture-coupled patch antenna based on substrate-integrated suspended line platform for 5G application. Microwave and Optical Technology Letters, 63(11), 2876–2881. https://doi.org/10.1002/MOP.33006

  • Yuwono, R., & Mujahidin, I. (2019). Rectifier using UWB microstrip antenna as electromagnetic energy harvester for GSM, CCTV and Wi-Fi transmitter. Journal of Communications, 14(11), 1098–1103. https://doi.org/10.12720/JCM.14.11.1098-1103

  • Yuwono, R., Mujahidin, I., Mustofa, A., & Aisah. (2015). Rectifier using UFO microstrip antenna as electromagnetic energy harvester. Advanced Science Letters, 21(11), 3439–3443. https://doi.org/10.1166/asl.2015.6574

  • Zhang, W., Liu, T., Yang, G., Jiang, C., Hu, Y., Zhu, X., Lan, T., & Zhao, Z. (2022). The application of beamforming technology in ionospheric oblique incidence sounding with Wuhan Multi-Channel Ionospheric Sounding System (WMISS). IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2021.3095910

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST(S)-0605-2023

Download Full Article PDF

Share this article

Related Articles