PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (1) Jan. 2024 / JST(S)-0579-2023

 

Transfer Learning for Lung Nodules Classification with CNN and Random Forest

Abdulrazak Yahya Saleh, Chee Ka Chin and Ros Ameera Rosdi

Pertanika Journal of Science & Technology, Volume 32, Issue 1, January 2024

DOI: https://doi.org/10.47836/pjst.32.1.25

Keywords: Convolutional Neural Network, CT scan, lung nodules, random forest, transfer learning

Published on: 15 January 2024

Machine learning and deep neural networks are improving various industries, including healthcare, which improves daily life. Deep neural networks, including Convolutional Neural Networks (CNNs), provide valuable insights and support in improving daily activities. In particular, CNNs enable the recognition and classification of images from CT and MRI scans and other tasks. However, training a CNN requires many datasets to attain optimal accuracy and performance, which is challenging in the medical field due to ethical worries, the lack of descriptive notes from experts and labeled data, and the overall scarcity of disease images. To overcome these challenges, this work proposes a hybrid CNN with transfer learning and a random forest algorithm for classifying lung cancer and non-cancer from CT scan images. This research aims include preprocessing lung nodular data, developing the proposed algorithm, and comparing its effectiveness with other methods. The findings indicate that the proposed hybrid CNN with transfer learning and random forest performs better than standard CNNs without transfer learning. This research demonstrates the potential of using machine learning algorithms in the healthcare industry, especially in disease detection and classification.

  • Agarwal, A., Patni, K., & Rajeswari, D. (2021, July 8-10). Lung cancer detection and classification based on Alexnet CNN. [Paper presentation]. International Conference on Communication and Electronics System (ICCES 2021), Coimbatre, India. https://doi.org/10.1109/ICCES51350.2021.9489033

  • Ali, I., Hart, G. R., Gunabushanam, G., Liang, Y., Muhammad, W., Nartowt, B., Kane, M., Ma, X., & Deng, J. (2018). Lung nodule detection via deep reinforcement learning. Frontiers in Oncology, 8, 108. https://doi.org/10.3389/fonc.2018.00108

  • Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., Essen, B. C. V., Awwal, A. A. S., & Asari, V. K. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292. https://doi.org/10.3390/electronics8030292

  • Anderson, J., Rainie, L., & Luchsinger, A. (2018, December 10). Artificial intelligence and the future of humans. Pew Research Center. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://tony-silva.com/eslefl/miscstudent/downloadpagearticles/AIhumanfuture-pew.pdf

  • Arabahmadi, M., Farahbakhsh, R., & Rezazadeh, J. (2022). Deep learning for smart healthcare—A survey on brain tumor detection from medical imaging. Sensors, 22(5), 1960. https://doi.org/10.3390/s22051960

  • Ardimento, P., Aversano, L., Bernardi, M. L., & Cimitile, M. (2021, July 18-22). Deep neural networks ensemble for lung nodule detection on chest CT scans. [Paper presentation]. International Joint Conference on Neural Networks (IJCNN 2021), Shenzhen, China. https://doi.org/10.1109/IJCNN52387.2021.9534176

  • Azizah, A., Hashimah, B., Nirmal, K., Siti Zubaidah, A., Puteri, N., Nabihah, A., Sukumaran, R., Balqis, B., Nadia, S. M. R., Sharifah, S. S. S., Rahayu, O., Nur Alham, O., & Azlina, A. A. (2019). Malaysia national cancer registry report (Report 2012-2016). National Cancer Registry. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.moh.gov.my/moh/resources/Penerbitan/Laporan/Umum/2012-2016%20(MNCRR)/MNCR_2012-2016_FINAL_(PUBLISHED_2019).pdf

  • Bertrand, G. (2005). On topological watersheds. Journal of Mathematical Imaging and Vision, 22(2), 217-230. https://doi.org/10.1007/s10851-005-4891-5

  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492

  • Camp, B. V. B. (2022). Data from The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans (LIDC-IDRI). The Cancer Imaging Archive (TCIA) Public Access. https://pubmed.ncbi.nlm.nih.gov/21452728/

  • Chin, C. K., Mat, D. A. A., & Saleh, A. Y. (2021a). Hybrid of convolutional neural network algorithm and autoregressive integrated moving average model for skin cancer classification among Malaysian. IAES International Journal of Artificial Intelligence, 10(3), 707-716. https://doi.org/10.11591/ijai.v10.i3.pp707-716

  • Chin, C. K., Mat, D. A. A., & Saleh, A. Y. (2021b, April 9-11). Skin cancer classification using convolutional neural network with autoregressive integrated moving average. [Paper presentation]. International Conference on Robot Systems and Applications (ICRSA 2021), Chengdu, China. https://doi.org/10.1145/3467691.3467693

  • Da Nóbrega, R. V. M., Peixoto, S. A., da Silva, S. P. P., & Rebouças Filho, P. P. (2018, June 18-21). Lung nodule classification via deep transfer learning in CT lung images. [Paper presentation]. International Symposium on Computer-based Medical Systems (CBMS 2018), Karlstad, Sweden. https://doi.org/10.1109/CBMS.2018.00050

  • Forte, G. C., Altmayer, S., Silva, R. F., Stefani, M. T., Libermann, L. L., Cavion, C. C., Youssef, A., Forghani, R., King, J., Mohamed, T. L., Andrade, R. G. F., & Hochhegger, B. (2022). Deep learning algorithms for diagnosis of lung cancer: A systematic review and meta-analysis. Cancers, 14(16), 3856. https://doi.org/10.3390/cancers14163856

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

  • Haiying, Y., Zhongwei, F., Ding, D., & Zengyang, S. (2021, May 25-27). False-positive reduction of pulmonary nodule detection based on deformable convolutional neural networks. [Paper presentation]. International Conference on Bioinformatics and Computational Biology (ICBCB 2021), Taiyuan, China. https://doi.org/10.1109/ICBCB52223.2021.9459209

  • Halder, A., Dey, D., & Sadhu, A. K. (2020). Lung nodule detection from feature engineering to deep learning in thoracic CT images: A comprehensive review. Journal of Digital Imaging, 33(3), 655-677. https://doi.org/10.1007/s10278-020-00320-6

  • Keshari, R., Vatsa, M., Singh, R., & Noore, A. (2018, June 18-23). Learning structure and strength of CNN filters for small sample size training. [Paper presentation]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), Utah, USA.

  • Li, Z., Yao, H., & Ma, F. (2020, February 3-7). Learning with small data. [Paper presentation]. International Conference on Web Search and Data Mining (WSDM 2020), New York, USA.

  • Nakrani, M. G., Sable, G. S., & Shinde, U. B. (2021). A comprehensive review on deep learning based lung nodule detection in computed tomography images. In S. C. Satapathy, V. Bhateja, B. & Janakiramaiah, Y. W. Chen (Eds.) Intelligent system design (pp.107-116). Springer Link. https://doi.org/10.1007/978-981-15-5400-1_12

  • Peirelinck, T., Kazmi, H., Mbuwir, B. V., Hermans, C., Spiessens, F., Suykens, J., & Deconinck, G. (2022). Transfer learning in demand response: A review of algorithms for data-efficient modelling and control. Energy and AI, 7, 100126. https://doi.org/10.1016/j.egyai.2021.100126

  • Primakov, S. P., Ibrahim, A., van Timmeren, J. E., Wu, G., Keek, S. A., Beuque, M., Granzier, R. W. Y., Lavrova, E., Scrivener, M., Sanduleanu, S., Kayan, E., Halilaj, I., Lenaers, A., Wu, J., Monshouwer, R., Geets, X., Gietema, H. A., Hendriks, L. E. L., Morin, O., … & Lambin, P. (2022). Automated detection and segmentation of non-small cell lung cancer computed tomography images. Nature Communications, 13(1), 3423. https://doi.org/10.1038/s41467-022-30841-3

  • Qin, Y., Zheng, H., Zhu, Y. M., & Yang, J. (2018, April 15-20). Simultaneous accurate detection of pulmonary nodules and false positive reduction using 3D CNNs. [Paper presentation]. International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), Alberta, Canada. https://doi.org/10.1109/ICASSP.2018.8462546

  • Rajadurai, P., How, S. H., Liam, C. K., Sachithanandan, A., Soon, S. Y., & Tho, L. M. (2020). Lung cancer in Malaysia. Journal of Thoracic Oncology, 15(3), 317–323. https://doi.org/10.1016/j.jtho.2019.10.021

  • Salahuddin, Z., Woodruff, H. C., Chatterjee, A., & Lambin, P. (2022). Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Computers in Biology and Medicine, 140, 105111. https://doi.org/10.1016/j.compbiomed.2021.105111

  • Saleh, A. Y., Chin, C. K., Penshie, V., & Al-Absi, H. R. H. (2021). Lung cancer medical images classification using hybrid CNN-SVM. International Journal Advanced in Intelligence Information, 7(2), 151-162. https://doi.org/10.26555/ijain.v7i2.317

  • Sharif, M. I., Li, J. P., Naz, J., & Rashid, I. (2020). A comprehensive review on multi-organs tumor detection based on machine learning. Pattern Recognition Letters, 131, 30-37. https://doi.org/10.1016/j.patrec.2019.12.006

  • Sheng, J., Li, Y., Cao, G., & Hou, K. (2021, July 18-22). Modeling nodule growth via spatial transformation for follow-up prediction and diagnosis. [Paper presentation]. International Joint Conference on Neural Networks (IJCNN 2021), Shenzhen, China. https://doi.org/10.1109/IJCNN52387.2021.9534163

  • Singh, G. A .P., & Gupta, P. K. (2019). Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Computing and Applications, 31(10), 6863–6877. https://doi.org/10.1007/s00521-018-3518-x

  • Tang, H., Kim, D. R., & Xie, X. (2018, April 4-7). Automated pulmonary nodule detection using 3D deep convolutional neural networks. [Paper presentation]. International Symposium on Biomedical Imaging (ISBI 2018), Washington, USA. https://doi.org/10.1109/ISBI.2018.8363630

  • Tang, S., Yang, M., & Bai, J. (2020). Detection of pulmonary nodules based on a multiscale feature 3D U-Net convolutional neural network of transfer learning. PloS One, 15(8), e0235672. https://doi.org/10.1371/journal.pone.0235672

  • Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F., & Heist, R. S. (2021). Lung cancer. The Lancet, 398(10299), 535–554. https://doi.org/10.1016/S0140-6736(21)00312-3

  • Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights Into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9

  • Zakaria, R., Abdelmajid, H., & Zitouni, D. (2022). Deep learning in medical imaging: A review. In J. K. Mandal, S. Misra, J. S. Banerjee & S. Nayak (Eds.) Application of machine intelligence in engineering (pp.131-144). CRC Press. https://doi.org/10.1201/9781003269793-15

  • Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J., & Qian, W. (2018). Agile convolutional neural network for pulmonary nodule classification using CT images. International Journal of Computer Assisted Radiology and Surgery, 13(4), 585-595. https://doi.org/10.1007/s11548-017-1696-0

  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... & He, Q. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43-76. https://doi.org/10.1109/JPROC.2020.3004555