e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 30 (1) Jan. 2022 / JST-2039-2020


Optical Properties of Cu2O Thin Films Impregnated with Carbon Nanotube (CNT)

Oluyamo Sunday Samuel, Ajanaku Olanrewaju and Adedayo Kayode David

Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022


Keywords: Bandgap, Carbon-nanotube (CNT), Copper (I) Oxide (Cu2O), optical characterization, spray pyrolysis

Published on: 10 January 2022

This study investigates CNT-doped Cu2O thin film deposited by spray pyrolysis technique at a substrate temperature of 100°C. The samples were annealed at temperatures of 200°C and 230°C for 30 minutes. The effect of CNT doping on certain optical properties, such as extinction and absorption coefficients, a refractive index of doped Cu2O thin films were examined. The absorbance of the doped samples increases within the visible range and decreases in the ultraviolet range of the electromagnetic spectrum (EM). Both absorbance and extinction coefficients increased with temperature making the samples a good candidate for use as absorbance layer in device fabrication. In addition, there was an increase in direct bandgap with the increase in CNT concentration of the thin films. The result of the study revealed that CNT doping has a significant effect on the properties of Cu2O.

  • Chatterjee, S., Saha, S. K., & Pal, A. J. (2016). Formation of all-oxide solar cells in atmospheric condition based on Cu2O thin-films grown through SILAR technique. Solar Energy Materials and Solar Cells, 147, 17-26.

  • Daoudi, O., Qachaou, Y., Raidou, A., Nouneh, K., Lharch, M., & Fahoume, M. (2018). Study of the physical properties of CuO thin films grown by modified SILAR method for solar cells applications. Superlattices Microstructure, 127, 93-99.

  • Farhad, S. F. U., Hossain, M. A., Tanvir, N. I., Akter, R., Patwary, M. A. M., Shahjahana, M., & Rahman, M. A. (2019). Structural, optical, electrical, and photo electrochemical properties of cuprous oxide thin films grown by modified SILAR method. Material Science in Semiconductor Processing, 95, 68-75.

  • Farhad, S. F. U., Webster, R. F., & Cherns, D. (2018). Electron microscopy and diffraction studies of pulsed laser deposited cuprous oxide thin films grown at low substrate temperatures. Materialia, 3, 230-238.

  • Figueiredo, V., Elangovan, E., Goncalves, G., Barquinha, P., Pereira, L., Franco, N., Alves, E., Martins, R., & Fortunato, E. (2008). Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Applied Surface Science, 254(13), 3949-3954.

  • Mardare, D., & Rusu, G. I. (2002). The influence of heat treatment on the optical properties of titanium oxide thin films. Materials Letters, 56(3), 210-214.

  • Mohammed, K. H. (2010). Effect doping on optical properties film CuO prepared by chemical spray pyrolysis. Diyala Journal for Pure Sciences, 2(6), 106-116.

  • Muhibbullah, M., & Ichimura, M. (2010). Fabrication of photoconductive copper oxide thin films by the chemical bath deposition technique. Japanese Journal of Applied Physics, 49(8), Article 081102.

  • Musa, A.O., Akomolafe, T., & Carter, M. J. (1998). Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Solar Energy Materials and Solar Cells, 51(3-4), 305-316.

  • Nair, M. T. S., Guerrero, L., Arenas, O. L., & Nair, P. K. (1999). Chemically deposited copper oxide thin films: Structural, optical and electrical characteristics. Applied Surface Science, 150(1-4), 143-151.

  • Nakano, Y., Saeki, S., & Morikawa, T. (2009). Optical bandgap widening of p-type Cu2O films by nitrogen doping. Applied Physics Letters, 94(2), Article 022111.

  • Nath, S. K., Chowdhury, N., & Gafur, M. A. (2015). Effect of Co doping on crystallographic and optoelectronic properties of ZnO thin films. Journal of Superconductivity and Novel Magnetism, 28, 117-123.

  • Oluyamo, S. S., Nyagba, M. S., Ambrose, S., & Ojo, S. (2014). Optical properties of copper (I) oxide thin films synthesized by SILAR technique. IOSR Journal of Applied Physics, 6(3), 102-105.

  • Perednis, D., & Gauckler, L. J. (2005). Thin film deposition using spray pyrolysis. Journal of Electroceramics, 14(2), 103-111.

  • Rafea, A. M., & Roushdy, N. (2009). Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. Journal of Physics D: Applied Physics, 42(1), Article 015413.

  • Ruhle, S., Anderson, A.Y., Barad, H.N., Kupfer, B., Bouhadana, Y., Rosh-Hodesh, E., & Zaban, A. (2012). All-oxide photovoltaic. The Journal of Physical Chemistry Letters, 3(24), 3755-3764.

  • Septina, W., Ikeda, S., Khan, M. A., Hirai, T., Harada, T., Matsumura, M., & Peter, L. M. (2011). Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochimica Acta, 56(13) 4882-4888.

  • Siddiqui, H., Qureshi, M. S., & Haque, F. Z. (2014). One-step, template-free hydrothermal synthesis of CuO tetrapods. Optik-International Journal for Light and Electron Optics, 125(17), 4663-4667.

  • Thostenson, E. T., Ren, Z. F., & Chou, T. W. (2001). Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 61(13), 1899-1912.

  • Varughese, G., Rini, V., Suraj, S. P., & Usha, K. T. (2014). Characterisation and optical studies of copper oxide nanostructures doped with lanthanum ions. Advances in Materials Science, 14(4), 49-60.

  • Yoo, J. J., Yu, J., Song, J. Y., & Yi, Y. (2011). Single-walled carbon nanotubes as a dopant in p-type cuprous oxide films. Carbon, 49(8), 2659-2664.

  • Zang, Z., Nakamura, A., & Temmyo, J. (2013). Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature. Materials Letters, 92, 188-191.

  • Zang, Z., Nakamura, A., & Temmyo, J. (2013). Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Optics Express, 21(9), 11448-11456.

  • Zhu, Z. (2017). An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Letters, 9, Article 25.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Recent Articles