Home / Regular Issue / JST Vol. 29 (4) Oct. 2021 / JST-2596-2021


Synthesis, Characterisation, and Density Functional Theory Study of Encapsulated Bioactive Components of Ginger

Triati Dewi Kencana Wungu, Damar Rastri Adhika, Meqorry Yusfi, Atsarina Larasati Anindya, Eduardus Bimo Aksono, Raden Roro Fosa Sarassina, Christofora Hanny Wijaya and Suprijadi

Pertanika Journal of Science & Technology, Volume 29, Issue 4, October 2021

DOI: https://doi.org/10.47836/pjst.29.4.22

Keywords: DFT, encapsulation, ginger, gingerol, TEM

Published on: 29 October 2021

In this paper, we encapsulated ginger bioactive components in maltodextrin nanocapsules. Ginger nanocapsules were characterised using Transmission Electron Microscope (TEM) and Particle Size Analyser (PSA). The results show that the nanoparticles have a generally globular shape with particle size under 200 nm. In addition, the simulation of gingerol and dextran, as a representative for maltodextrin, was also investigated using Density Functional Theory (DFT) calculation. From the DFT calculation, gingerol exhibited a physisorption interaction with dextran by forming hydrogen bonds. Furthermore, the density of state analysis shows that the gingerol-dextran system has a conductive-like behaviour that promotes the nanocapsules’ cell uptake.

  • Ahmad, M., Mudgil, P., Gani, A., Hamed, F., Masoodi, F. A., & Maqsood, S. (2019). Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chemistry, 270, 95-104. https://doi.org/10.1016/j.foodchem.2018.07.024

  • Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953

  • Fröhlich, E. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 2012(7), 5577-5591. https://doi.org/10.2147/IJN.S36111

  • Ghayour, N., Hosseini, S. M. H., Eskandari, M. H., Esteghlal, S., Nekoei, A. R., Hashemi Gahruie, H., Tatar, M., & Naghibalhossaini, F. (2019). Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocolloids, 87, 394-403. https://doi.org/10.1016/j.foodhyd.2018.08.031

  • Hosseinidoust, Z., Alam, M. N., Sim, G., Tufenkji, N., & Van De Ven, T. G. M. (2015). Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale, 7(40), 16647-16657. https://doi.org/10.1039/c5nr02506k

  • İnanç Horuz, T., & Belibağlı, K. B. (2018). Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chemistry, 268, 86-93. https://doi.org/10.1016/j.foodchem.2018.06.017

  • Ippoushi, K., Azuma, K., Ito, H., Horie, H., & Higashio, H. (2003). [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sciences, 73(26), 3427-3437. https://doi.org/10.1016/j.lfs.2003.06.022

  • Jaganathan, A., & Kumar, S. M. (2017). Nano bioactive compounds to enrich antioxidant methods in food science. IJIRST-International Journal for Innovative Research in Science & Technology, 3(10), 239-246.

  • Khayer, K., & Haque, T. (2020). Density functional theory calculation on the structural, electronic, and optical properties of fluorene-based azo compounds. ACS Omega, 5(9), 4507-4531. https://doi.org/10.1021/acsomega.9b03839

  • King, A. H. (1995). Encapsulation of food ingredients. ACS Symposium Series, 590, 26-39. https://doi.org/10.1021/bk-1995-0590.ch003

  • Klausen, L. H., Fuhs, T., & Dong, M. (2016). Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nature Communications, 7(1), 1-10. https://doi.org/10.1038/ncomms12447

  • Koo, K. L. K., Ammit, A. J., Tran, V. H., Duke, C. C., & Roufogalis, B. D. (2001). Gingerols and related analogues inhibit arachidonic acid-induced human platelet serotonin release and aggregation. Thrombosis Research, 103(5), 387-397. https://doi.org/10.1016/S0049-3848(01)00338-3

  • Kou, X., Ke, Y., Wang, X., Rahman, M. R. T., Xie, Y., Chen, S., & Wang, H. (2018). Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry, 257, 223-229. https://doi.org/10.1016/j.foodchem.2018.02.125

  • Kresse, G., & Furthmüller, J. (1996a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. https://doi.org/10.1016/0927-0256(96)00008-0

  • Kresse, G., & Furthmüller, J. (1996b). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169

  • Kundu, J. K., & Surh, Y. J. (2009). Molecular basis of chemoprevention with dietary phytochemicals: Redox-regulated transcription factors as relevant targets. Phytochemistry Reviews, 8(2), 333-347. https://doi.org/10.1007/s11101-009-9132-x

  • Lakshmi, S., Rampriya, S., & Baskar, V. (2012). Nano drug system of shogaol for transdermal delivery enhancement. Journal of Biological and Information Sciences, 1(2), 12-17.

  • Michailidou, G., Ainali, N. M., Xanthopoulou, E., Nanaki, S., Kostoglou, M., Koukaras, E. N., & Bikiaris, D. N. (2020). Effect of poly(vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability. Polymers, 12(5), 1101-1123. https://doi.org/10.3390/polym12051101

  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188

  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815. https://doi.org/10.1016/j.profoo.2011.09.265

  • Pekker, M., & Shneider, M. N. (2014). The surface charge of a cell lipid membrane. Journal of Physical Chemistry & Biophysics, 5(2), 177-183. https://doi.org/10.4172/2161-0398.1000177

  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865

  • Rezaei, A., Fathi, M., & Jafari, S. M. (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food hydrocolloids, 88, 146-162. https://doi.org/10.1016/j.foodhyd.2018.10.003

  • Setzer, W. N. (2010). A DFT analysis of thermal decomposition reactions important to natural products. Natural Product Communications, 5(7), 993-998. https://doi.org/10.1177/1934578x1000500701

  • Shah, R., Eldridge, D., Palombo, E., & Harding, I. (2014). Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. Journal of Physical Science, 25(1), 59-75.

  • Shahrajabian, M. H., Sun, W., & Cheng, Q. (2019). Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 69(6), 546-556. https://doi.org/10.1080/09064710.2019.1606930

  • Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M. A. C., Coimbra, J. S. R., Carneiro-Da-Cunha, M. G., & Vicente, A. A. (2011). Nanoemulsions of β-carotene using a high-energy emulsification- evaporation technique. Journal of Food Engineering, 102(2), 130-135. https://doi.org/10.1016/j.jfoodeng.2010.08.005

  • Suekawa, M., Ishige, A., Yuasa, K., Sudo, K., Aburada, M., & Hosoya, E. (1984). Pharmacological studies on ginger. I. Pharmacological actions of pungent constituents, (6)-gingerol and (6) -shogaol. Journal of Pharmacobio-Dynamics, 7(11), 836-848. https://doi.org/10.1248/bpb1978.7.836

  • Suganya, V., & Anuradha, V. (2017). Microencapsulation and nanoencapsulation: A review. International Journal of Pharmaceutical and Clinical Research, 9(3), 233-239. https://doi.org/10.25258/ijpcr.v9i3.8324

  • Tatur, S., MacCarini, M., Barker, R., Nelson, A., & Fragneto, G. (2013). Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir, 29(22), 6606-6614. https://doi.org/10.1021/la401074y

  • White, B. (2007). Ginger: An overview. American Family Physician, 75(11), 1689-1691.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Recent Articles