Home / Regular Issue / JST Vol. 30 (1) Jan. 2022 / JST-2810-2021

 

Effect of Chemical Reaction towards MHD Marginal Layer Movement of Casson Nanofluid through Porous Media above a Moving Plate with an Adaptable Thickness

Ganugapati Raghavendra Ganesh and Wuriti Sridhar

Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022

DOI: https://doi.org/10.47836/pjst.30.1.26

Keywords: Adaptive thickness, Casson nanofluid, chemical reaction, porous medium, thermal conductivity, thermal radiation

Published on: 10 January 2022

In the current workflow and heat exchange of a Casson nanoliquid across a penetrable media above a moving plate with variable thermal conductivity, adaptive thickness and chemical reaction are analyzed. First, the governing nonlinear equations of partial derivative terms with proper extreme conditions are changed into equations of ordinary derivative terms with suitable similarity conversions. Then the resulting equations are worked out using the Keller box method. The effects of various appropriate parameters are analyzed by constructing the visual representations of velocity, thermal, and fluid concentration. The velocity profile increased for shape parameter, and the opposite trend is observed for magnetic, Casson, porosity parameters. Temperature profile increases for magnetic, Casson, Brownian motion parameter, and thermophoresis parameters. Concentration profiles show a decreasing trend for wall thickness, Brownian movement, chemical reaction parameters. Also, skin friction values and calculated and matched with previous literature found in accordance. Also, local parameters Nusselt and Sherwood numbers are calculated and analyzed in detail.

  • Abdel-wahed, M. S., Elbashbeshy, E. M. A., & Emam, T. G. (2015). Flow and heat transfer over a moving surface with non-linear velocity and variable thickness in a nanofluids in the presence of Brownian motion. Applied Mathematics and Computation, 254, 49-62. https://doi.org/10.1016/j.amc.2014.12.087

  • Ahmad, K., Hanouf, Z., & Ishak, A. (2017). MHD Casson nanofluid flow past a wedge with Newtonian heating. The European Physical Journal Plus, 132(2), 1-11. https://doi.org/10.1140/epjp/i2017-11356-5

  • Beg, O. A., Thumma, T., & Sheri, S. R. (2009). Finite element computation of magnetohydrodynamic nanofluid. Computational Materials Science, 46(4), 1028-1037.

  • Besthapu, P., & Bandari, S. (2015). Mixed convection MHD flow of a Casson nanofluid over a nonlinear permeable stretching sheet with viscous dissipation. Journal of Applied Mathematics and Physics, 03(12), 1580-1593. https://doi.org/10.4236/jamp.2015.312182

  • Biswas, R., & Ahmmed, S. F. (2018). Effects of hall current and chemical reaction on Magnetohydrodynamics unsteady heat and mass transfer of Casson nanofluid flow through a vertical plate. Journal of Heat Transfer, 140(9), 1-12. https://doi.org/10.1115/1.4039909

  • Choi, S. U. S. (2008). Nanofluids: A new field of scientific research and innovative applications. Heat Transfer Engineering, 29(5), 429-431. https://doi.org/10.1080/01457630701850778

  • Das, S. K., Choi, S. U. S., Yu, W., & Pradeep, T. (2007). Nanofluids. John Wiley & Sons. https://doi.org/10.1002/9780470180693

  • Dharmaiah, G., Chamkha, A. J., Vedavathi, N., & Balamurugan, K. S. (2019a). Viscous dissipation effect on transient aligned magnetic free convective flow past an inclined moving plate. Frontiers in Heat and Mass Transfer, 12, Article 17. https://doi.org/10.5098/hmt.12.17

  • Dharmaiah, G., Vedavathi, N., Balamurugan, K. S., & Ramakrishna, K. (2019b). A study on MHD boundary layer flow rotating frame nanofluid with chemical reaction. Frontiers in Heat and Mass Transfer, 12, Article 10. https://doi.org/10.5098/hmt.12.10

  • Dharmaiah, G., Sridhar, W., Balamurugan, K. S., & Kala, K. C. (2020). Hall and ion slip impact on magneto-titanium alloy nanoliquid with diffusion thermo and radiation absorption. International Journal of Ambient Energy, 1-11. https://doi.org/10.1080/01430750.2020.1831597

  • Dharmaiah, G., Vedavathi, N., Balamurugan, K. S., & Prakash, J. (2017). Heat transfer on MHD nanofluid flow over a semi infinite flat plate embedded in a porous medium with radiation absorption, heat source and diffusion thermo effect. Frontiers in Heat and Mass Transfer, 9, Article 38. https://doi.org/10.5098/hmt.9.38

  • Fang, T., Zhang, J., & Zhong, Y. (2012). Boundary layer flow over a stretching sheet with variable thickness. Applied Mathematics and Computation, 218(13), 7241-7252. https://doi.org/10.1016/j.amc.2011.12.094

  • Ibrahim, W., & Makinde, O. D. (2016). Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. Journal of Aerospace Engineering, 29(2), Article 04015037. https://doi.org/10.1061/(asce)as.1943-5525.0000529

  • Ismail, H., Abdel-Wahed, M., & Omama, M. (2021). Effect of variable thermal conductivity on the MHD boundary-layer of Casson-nanofluid over a moving plate with variable thickness. Thermal Science, 25(1 Part A), 145-157. https://doi.org/10.2298/tsci190324293i

  • Khan, M., Shahid, A., Salahuddin, T., Malik, M. Y., & Mushtaq, M. (2018). Heat and mass diffusions for Casson nanofluid flow over a stretching surface with variable viscosity and convective boundary conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(11), 1-10. https://doi.org/10.1007/s40430-018-1415-y

  • Konda, J. R., Madhusudhana, N. P., & Konijeti, R. (2018). MHD mixed convection flow of radiating and chemically reactive Casson nanofluid over a nonlinear permeable stretching sheet with viscous dissipation and heat source. Multidiscipline Modeling in Materials and Structures, 14(3), 609-630. https://doi.org/10.1108/mmms-10-2017-0127

  • Madaki, A. G., Roslan, R., Kandasamy, R., & Chowdhury, M. S. H. (2017). Flow and heat transfer of nanofluid over a stretching sheet with non-linear velocity in the presence of thermal radiation and chemical reaction. In AIP Conference Proceedings (Vol. 1830, No. 1, p. 020014). AIP Publishing LLC. https://doi.org/10.1063/1.4980877

  • Mahdy, A., & Chamkha, A. (2015). Heat transfer and fluid flow of a non-Newtonian nanofluid over an unsteady contracting cylinder employing Buongiorno’s model. International Journal of Numerical Methods for Heat & Fluid Flow, 25(4), 703-723. https://doi.org/10.1108/hff-04-2014-0093

  • Mahmood, A., Jamshed, W., & Aziz, A. (2018). Entropy and heat transfer analysis using Cattaneo-Christov heat flux model for a boundary layer flow of Casson nanofluid. Results in Physics, 10, 640-649. https://doi.org/10.1016/j.rinp.2018.07.005

  • Malik, M. Y., Naseer, M., Nadeem, S., & Rehman, A. (2014). The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder. Applied Nanoscience, 4(7), 869-873. https://doi.org/10.1007/s13204-013-0267-0

  • Nagalakshm, P. S. S., & Vijaya, N. (2020). MHD flow of Carreau nanofluis explored using CNT over a nonlinear stretched sheet. Frontiers in Heat and Mass Transfer, 14(4), 1-9. https://doi.org/10.5098/hmt.14.4

  • Oyelakin, I. S., Mondal, S., & Sibanda, P. (2016). Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions. Alexandria Engineering Journal, 55(2), 1025-1035. https://doi.org/10.1016/j.aej.2016.03.003

  • Reddy C, S., Naikoti, K., & Rashidi, M. M. (2017). MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity. Transactions of A. Razmadze Mathematical Institute, 171(2), 195-211. https://doi.org/10.1016/j.trmi.2017.02.004

  • Reddy, J. V. R., Sugunamma, V., & Sandeep, N. (2018). Slip flow of MHD Casson-nanofluid past a variable thickness sheet with joule heating and viscous dissipation: A comparative study using three base fluids. Journal of Nanofluids, 7(6), 1113-1121. https://doi.org/10.1166/jon.2018.1540

  • Sheikholeslami, M., Abelman, S., & Ganji, D. D. (2014). Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. International Journal of Heat and Mass Transfer, 79, 212-222. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.004

  • Singh, A. (2008). Thermal conductivity of nanofluids. Defence Science Journal, 58(5), 600-607. https://doi.org/10.14429/dsj.58.1682

  • Sridhar, W., & Lakshmi, G. V. (2020). MHD nanofluid over a stretching surface immersed in double stratified media with radiation and partial slip conditions. International Journal of Advanced Science and Technology, 29(9s), 3204-3213.

  • Talla, H., Kumari, P., & Sridhar, W. (2018). Numerical study to diffusion of chemically reactive species over MHD exponentially stretching surface of a Casson fluid. International Journal of Mechanical Engineering and Technology, 9(10), 470-481.

  • Uddin, M. J., Bég, O. A., & Ismail, A. I. (2015). Radiative convective nanofluid flow past a stretching/shrinking sheet with slip effects. Journal of Thermophysics and Heat Transfer, 29(3), 513-523. https://doi.org/10.2514/1.t4372

  • Vijaya, N., Babu, S. G., & Lakshmi, V. N. (2020). Influence of critical parameters on liquid thin film flow of Casson nanofluid over elongated sheet under thermoporesis and Brownian motion. Frontiers in Heat and Mass Transfer, 15, Article 23. https://doi.org/10.5098/hmt.15.23

  • Wang, X. Q., & Mujumdar, A. S. (2008a). A review on nanofluids - part I: Theoretical and numerical investigations. Brazilian Journal of Chemical Engineering, 25(4), 613-630. https://doi.org/10.1590/s0104-66322008000400001

  • Wang, X. Q., & Mujumdar, A. S. (2008b). A review on nanofluids - part II: Experiments and applications. Brazilian Journal of Chemical Engineering, 25(4), 631-648. https://doi.org/10.1590/s0104-66322008000400002

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2810-2021

Download Full Article PDF

Share this article

Recent Articles