Home / Regular Issue / JST Vol. 30 (2) Apr. 2022 / JST-3220-2021

 

Kinetic Study of Fenton-Like Degradation of Methylene Blue in Aqueous Solution Using Calcium Peroxide

Fan Li, Thomas Shean Yaw Choong, Soroush Soltani, Luqman Chuah Abdullah and Siti Nurul Ain Md. Jamil

Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022

DOI: https://doi.org/10.47836/pjst.30.2.13

Keywords: Calcium peroxide, degradation, fenton reaction, kinetic study, methylene blue

Published on: 1 April 2022

The textile industry is one of the fastest-growing industries that significantly contribute to the economic growth in Malaysia. Dyeing wastewater is one of the more difficult to control in industrial wastewater. Methylene blue is a widely used dye in the textile industry, which cannot be discharged directly into the natural environment without treatment. The present study involves the degradation of methylene blue by a Fenton-like system using calcium peroxide (CaO2, CP). The process of degradation was recorded spectrophotometrically. The field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) were measured for testing the purchased commercial calcium peroxide. The effect of pH, the initial dosage of CaO2, and temperatures were studied with kinetics modeling, respectively. The results indicated that 97.07% removal of methylene blue took place at the optimum condition (pH=3.0, initial CaO2, dosage=3.0 g, 65°C, 150 rpm, contact time=60 minutes). Over four models (zero-order, first-order, second-order, Behnajady, Modirshahla, and Ghanbary (BMG) model) applied in this study, the BMG model with the R2=0.9935 was in accordance with the experimental data.

  • Ameta, R., Kumar, D., & Jhalora, P. (2014). Photocatalytic degradation of methylene blue using calcium oxide. Acta Chimica & Pharmaceutica Indica, 4(1), 20-28.

  • Behnajady, M. A., Modirshahla, N., & Ghanbary, F. (2007). A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1-2), 98-102. https://doi.org/10.1016/j.jhazmat.2007.02.003

  • Cuerda-Correa, E. M., Alexandre-Franco, M. F., & Fernández-González, C. (2020). Advanced oxidation processes for the removal of antibiotics from water. An overview. Water, 12(1), Article 102. https://doi.org/10.3390/w12010102

  • Ebrahiem, E. E., Al-Maghrabi, M. N., & Mobarki, A. R. (2017). Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arabian Journal of Chemistry, 10, S1674-S1679. https://doi.org/10.1016/j.arabjc.2013.06.012

  • Emami, F., Tehrani-Bagha, A. R., Gharanjig, K., & Menger, F. M. (2010). Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye. Desalination, 257(1-3), 124-128. https://doi.org/10.1016/j.desal.2010.02.035

  • Ertugay, N., & Acar, F. N. (2017). Removal of COD and color from direct blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158-S1163. https://doi.org/10.1016/j.arabjc.2013.02.009

  • Fernandes, N. C., Brito, L. B., Costa, G. G., Taveira, S. F., Cunha-Filho, M. S. S., Oliveira, G. A. R., & Marreto, R. N. (2018). Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests. Chemico-Biological Interactions, 291, 47-54. https://doi.org/10.1016/j.cbi.2018.06.003

  • Girard, J. E. (2013). Principles of environmental chemistry (2nd Ed.). Jones & Bartlett Learning.

  • Hou, X., Shen, W., Huang, X., Ai, Z., & Zhang, L. (2016). Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B. Journal of Hazardous Materials, 308, 67-74. https://doi.org/10.1016/j.jhazmat.2016.01.031

  • Katheresan, V., Kansedo, J., & Lau, S. Y. (2018a). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060

  • Katheresan, V., Kansedo, J., & Lau, S. Y. (2018b). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060

  • León, G., Miguel, B., Manzanares, L., Saavedra, M. I., & Guzmán, M. A. (2021). Kinetic study of the ultrasound effect on Acid Brown 83 dye degradation by hydrogen peroxide oxidation processes. ChemEngineering, 5(3), Article 52. https://doi.org/10.3390/chemengineering5030052

  • Liu, X. (2018). Progress in the mechanism and kinetics of Fenton reaction. MOJ Ecology & Environmental Sciences, 3(1), 10-14. https://doi.org/10.15406/mojes.2018.03.00060

  • Madan, S. S., Upwanshi W, A., & Wasewar, K. L. (2016). Adsorption of α-toluic acid by calcium peroxide nanoparticles. Desalination and Water Treatment, 57(35), 16507-16513. https://doi.org/10.1080/19443994.2015.1079255

  • Olyaie, E., Banejad, H., Afkhami, A., Rahmani, A., & Khodaveisi, J. (2012). Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles. Separation and Purification Technology, 95, 10-15. https://doi.org/10.1016/j.seppur.2012.04.021

  • Pang, Y. L., & Abdullah, A. Z. (2013). Current status of textile industry wastewater management and research progress in malaysia: A review. Clean - Soil, Air, Water, 41(8), 751-764. https://doi.org/10.1002/clen.201000318

  • Rashid, U., Soltani, S., Al-Resayes, S. I., & Nehdi, I. A. (2018). Metal oxide catalysts for biodiesel production. In Y. Wu (Ed.), Metal oxides in energy technologies (pp. 303-319). Elsevier Inc. https://doi.org/10.1016/b978-0-12-811167-3.00011-0

  • Santana, C. S., Ramos, M. D. N., Velloso, C. C. V., & Aguiar, A. (2019). Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9), Article 1602. https://doi.org/10.3390/ijerph16091602

  • Soltani, S., Khanian, N., Choong, T. S. Y., Asim, N., & Zhao, Y. (2021). Microwave-assisted hydrothermal synthesis of sulfonated TiO2-GO core–shell solid spheres as heterogeneous esterification mesoporous catalyst for biodiesel production. Energy Conversion and Management, 238(February), Article 114165. https://doi.org/10.1016/j.enconman.2021.114165

  • Soltani, S., Khanian, N., Choong, T. S. Y., Rashid, U., Nehdi, I. A., & Alobre, M. M. (2020). PEG-assisted microwave hydrothermal growth of spherical mesoporous Zn-based mixed metal oxide nanocrystalline: Ester production application. Fuel, 279(May), Article 118489. https://doi.org/10.1016/j.fuel.2020.118489

  • Soltani, S., Rashid, U., Nehdi, I. A., Al-Resayes, S. I., & Al-Muhtaseb, A. H. (2017). Sulfonated mesoporous zinc aluminate catalyst for biodiesel production from high free fatty acid feedstock using microwave heating system. Journal of the Taiwan Institute of Chemical Engineers, 70, 219-228. https://doi.org/10.1016/j.jtice.2016.10.054

  • Sun, Y., Lyu, S., Brusseau, M. L., Tang, P., Jiang, W., Gu, M., Li, M., Lyu, Y., Qiu, Z., & Sui, Q. (2019). Degradation of trichloroethylene in aqueous solution by nanoscale calcium peroxide in the Fe(II)-based catalytic environments. Separation and Purification Technology, 226(March), 13-21. https://doi.org/10.1016/j.seppur.2019.05.075

  • Tran, M. H., Nguyen, H. C., Le, T. S., Dang, V. A. D., Cao, T. H., Le, C. K., & Dang, T. D. (2021). Degradation of glyphosate herbicide by an electro-Fenton process using carbon felt cathode. Environmental Technology (United Kingdom), 42(8), 1155-1164. https://doi.org/10.1080/09593330.2019.1660411

  • Trovó, A. G., Senivs, P., Palmiste, Ü., Sillanpää, M., & Tang, W. Z. (2016). Decolorization kinetics of acid blue 161 by solid peroxides catalyzed by iron in aqueous solution. Desalination and Water Treatment, 57(41), 19344-19356. https://doi.org/10.1080/19443994.2015.1098573

  • Wang, Q., Tian, S., Cun, J., & Ning, P. (2013). Degradation of methylene blue using a heterogeneous Fenton process catalyzed by ferrocene. Desalination and Water Treatment, 51(28-30), 5821-5830. https://doi.org/10.1080/19443994.2012.763047

  • Xu, X. R., Li, H. B., Wang, W. H., & Gu, J. D. (2004). Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7), 595-600. https://doi.org/10.1016/j.chemosphere.2004.07.030

  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172-184. https://doi.org/10.1016/j.cis.2014.04.002

  • Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. In International Journal of Environmental Science and Technology (Vol. 16, Issue 2). Springer. https://doi.org/10.1007/s13762-018-2130-z

  • Zhou, C., Gao, N., Deng, Y., Chu, W., Rong, W., & Zhou, S. (2012). Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water. Journal of Hazardous Materials, 231, 43-48. https://doi.org/10.1016/j.jhazmat.2012.06.032

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3220-2021

Download Full Article PDF

Share this article

Recent Articles