Home / Regular Issue / JST Vol. 30 (2) Apr. 2022 / JST-3251-2021

 

The Effects of the Indonesian Throughflow, River, and Tide on Physical and Hydrodynamic Conditions During the Wind- Driven Upwelling Period North of the Aru Islands

Abdul Basit, Bernhard Mayer and Thomas Pohlmann

Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022

DOI: https://doi.org/10.47836/pjst.30.2.45

Keywords: Aru Islands, river, tide, upwelling, wind

Published on: 1 April 2022

A three-dimensional baroclinic nonlinear numerical model—the Hamburg Shelf Ocean Model (HAMSOM)—was applied to investigate the effects of the Indonesian throughflow (ITF), river runoff, and tidal forcing on circulation during the southeast monsoon period (July 2004) north of the Aru Islands by conducting different sensitivity runs. It was found that the Ekman transport over the continental slope of the Sahul Shelf was the main factor that causes upwelling north of the Aru Islands, and this was suggested to be one of the main factors behind the surface water in the research area being relatively colder and saltier than the surrounding waters. The influence of South Pacific Subtropical Water (SPSW) on the surface water was indicated by the high surface salinity of waters within the internal salinity maximum layer. The results also suggested that onshore subsurface currents over the slope were induced not only by offshore surface currents over the slope but also by the ITF. By considering the eastern ITF route, river runoff and tidal forcing were also found to contribute significantly to the erosion of the salinity maximum (approx. 0.25) within the Halmahera Sea, thereby reducing sea surface salinity north of the Aru Islands. Furthermore, it was proposed that river runoff from the western coast of Papua Island contributed to intensified cross-shelf circulation over the continental slope. These conditions were related to enhancing vertical viscosity forces in the surface waters induced by stronger stratification as an impact of river inclusion in the simulation.

  • Allen, J. S., Newberger, P. A., & Federiuk, J. (1995). Upwelling circulation on the Oregon continental shelf. Part 1: Response to idealized forcing. Journal of Physical Oceanography, 25, 1843-1866. https://doi.org/10.1175/1520-0485(1995)025<1843:UCOTOC>2.0.CO;2

  • Alongi, D. M., Edyvane, K., do Ceu Guterres, M. O., Pranowo, W. S., Wirasantosa, S., & Wasson, R.(2011). Biophysical profile of the Arafura and Timor Seas, Report prepared for the Arafura Timor Seas Ecosystem Action (ATSEA) Program. United Nations Development Programme (UNDP) & Global Environmental Facility (GEF). https://iwlearn.net/iw-projects/3522/reports/biophysical-profile-of-the-arafura-and-timor-seas

  • Atmadipoera, A. S., Almatin, A. A., Zuraida, R., & Permanawati, Y. (2020). Seasonal upwelling in the Northern Arafura Sea from multidatasets in 2017. Pertanika Journal of Science & Technology, 28(4), 1487-1515. https://doi.org/10.47836/pjst.28.4.19

  • Backhaus, J. O. (1985). A three-dimensional model for the simulations of shelf sea dynamics. Deutsche Hydrographische Zeitschrift, 38, 165-187. https://doi.org/10.1007/BF02328975

  • Basit, A. (2019). Upwelling and related processes in the Banda and Northern Arafura Seas (Doctoral dissertation). Hamburg University, Germany. Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky. https://ediss.sub.uni-hamburg.de/handle/ediss/6182

  • Caldwell, P. C., Merrifield, M. A., & Thompson, P. R. (2015). Sea level measured by tide gauges from global oceans - The joint archive for sea level holdings (NCEI Accession No. 0019568, Version 5.5). NOAA National Centers for Environmental Information.

  • Döll, P., Kaspar, F., & Lehner, B. (2003). A global hydrological model for deriving water availability indicators: Model tuning and validation. Journal of Hydrology, 270, 105-134. https://doi.org/10.1016/S0022-1694(02)00283-4

  • Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmosphericand Oceanic Technology, l19, 183-204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

  • Egbert, G. D., Bennett, A. F., & Foreman, M. G. G. (1994). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research, 99, 24821-24852. https://doi.org/10.1029/94JC01894

  • Gan, J., Li, L., Wang, D., & Guo, X. (2009). Interaction of a river plume with coastal upwelling in the northeastern South China Sea. Continental Shelf Research, 29, 728-740. https://doi.org/10.1016/j.csr.2008.12.002

  • Gieskes, W. W. C., Kraay, G. W., Nontji, A., Setiapermana, D., & Sutomo. (1990). Monsoonal differences in primary production in the eastern Banda Sea (Indonesia). Netherlands Journal of Sea Research, 25(4), 473-483. https://doi.org/10.1016/0077-7579(90)90071-N

  • Good, S. A., Martin, M. J., & Rayner, N. A. (2013). EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118, 6704- 6716. https://doi.org/10.1002/2013JC009067

  • Gordon, A. L. (2005). Oceanography of the Indonesian seas and their throughflow. Oceanography, 18, 14-27. https://doi.org/10.5670/oceanog.2005.01

  • Gordon, A. L., Ffield, A., & Ilahude, A. G. (1994). Thermocline of the Flores and Banda seas. Journal of Geophysical Research: Oceans, 99(C9), 18235-18242. https://doi.org/10.1029/94JC01434

  • Gordon, A. L., Sprintall, J., Van Aken, H. M., Susanto, R. D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W., & Wirasantosa, S. (2010). The Indonesian throughflow during 2004-2006 as observed by the INSTANT program. Dynamics of Atmosphere and Oceans, 50, 115-128. https://doi.org/10.1016/j.dynatmoce.2009.12.002

  • Gordon, A. L., Susanto, R. D., Ffield, A., Huber, B. A., Pranowo, W., & Wirasantosa, S. (2008). Makassar strait throughflow 2004 to 2006. Geophysical Research Letters, 35(24), Article L24605. https://doi.org/10.1029/2008GL036372

  • Ilahude, A. G., Komar, & Mardanis. (1990). On the hydrology and productivity of the northern Arafura Sea. Netherlands Journal of Sea Research, 25(4), 573-582. https://doi.org/10.1016/0077-7579(90)90079-V

  • Iskandar, I. (2010). Seasonal and interannual patterns of sea surface temperature in Banda Sea as revealed by self-organizing map. Continental Shelf Research, 30(9), 1136-1148. https://doi.org/10.1016/j.csr.2010.03.003

  • Jungclaus, J. H., Botzet, M., Haak, H., Keenlyside, N., Luo, J. J., Latif, M., Marotzke, J., Mikolajewicz, U., & Roeckner, E. (2006). Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. Journal of Climate, 19, 3952-3972. https://doi.org/10.1175/JCLI3827.1

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., & Zhu, Y. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

  • Kämpf, J. (2016). On the majestic seasonal upwelling system of the Arafura Sea. Journal of Geophysical Research: Oceans, 121, 1218-1228. https://doi.org/10.1002/2015JC011197

  • Kida, S., & Richards K. J. (2009). Seasonal sea surface temperature variability in the Indonesian Seas. Journal of Geophysical Research: Oceans, 114, Article C06016. https://doi.org/10.1029/2008JC005150

  • Kochergin, V. P. (1987). Three-dimensional prognostic models. In N. S. Heaps (Ed.), Three-dimensional Coastal Ocean Models (pp. 201-208). American Geophysical Union Publishing.

  • Koch-Larrouy, A., Atmadipoera, A., Van Beek, P., Madec, G., Aucan, J., Lyard, F., Grelet, J., & Souhaut, M. (2015). Estimates of tidal mixing in the Indonesian archipelago from multidisciplinary INDOMIX in-situ data. Deep Sea Research Part I: Oceanographic Research Papers, 106, 136-153. https://doi.org/10.1016/j.dsr.2015.09.007

  • Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T., Bessières, L., & Molcard, R. (2007). On the transformation of Pacific water into Indonesian throughflow water by internal tidal mixing. Geophysical Research Letters, 34(4), 1-6. http://dx.doi.org/10.1029/ 2006GL028405

  • Lentz, S. J. (2001). The influence of stratification on the wind-driven cross-shelf circulation over the north Carolina shelf. Journal of Physical Oceanography, 23, 2749-2760. https://doi.org/10.1175/1520-0485(2001)031<2749:TIOSOT>2.0.CO;2

  • Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., & Röske, F. (2003). The Max-Planck-Institute global Ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5, 91-127. https://doi.org/10.1016/S1463-5003(02)00015-X

  • Mayer, B., & Damm, P. E. (2012). The Makassar Strait throughflow and its jet. Journal of Geophysical Research: Oceans, 117(C7), Article C07020. https://doi.org/10.1029/2011JC007809

  • Mayer, B., Damm, P. E., Pohlmann, T., & Rizal, S. (2010). What is driving the ITF? An illumination of the Indonesian throughflow with a numerical nested model system. Dynamics of Atmospheres and Oceans, 50, 301-312. https://doi.org/10.1016/j.dynatmoce.2010.03.002

  • Monterey, G., & Levitus, S. (1997). Seasonal variability of mixed layer depth for the World Ocean, NOAA Atlas NESDIS 14. U.S. Government Publishing Office. https://doi.org/10.1029/2005GL022463

  • Nagai, T., & Hibiya, T. (2015). Internal tides and associated vertical mixing in the Indonesian Archipelago. Journal of Geophysical Research: Oceans, 120(5), 3373-3390. https://doi.org/10.1002/ 2014JC010592

  • Nagai, T., Hibiya, T., & Bouruet‐Aubertot, P. (2017). Nonhydrostatic simulations of tide‐induced mixing in the Halmahera Sea: A possible role in the transformation of the Indonesian throughflow waters. Journal of Geophysical Research: Oceans, 122(11), 8933-8943. https://doi.org/10.1002/2017JC013381

  • Nagai, T., Hibiya, T., & Syamsudin, F. (2021). Direct estimates of turbulent mixing in the Indonesian archipelago and its role in the transformation of the Indonesian throughflow waters. Geophysical Research Letters, 48(6), Article e2020GL091731. https://doi.org/10.1029/2020gl091731

  • Nugroho, D., Koch-Larrouy, A., Gaspar, P., Lyard, F., Reffray, G., &Tranchant, B. (2018). Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties. Marine Pollution Bulletin, 131, 7-18. https://doi.org/10.1016/j.marpolbul.2017.06.033

  • Pohlmann, T. (1996a). Calculating the development of the thermal vertical stratification in the north sea with a three-dimensional baroclinic circulation model. Continental Shelf Research, 16(2), 163-194. https://doi.org/10.1016/0278-4343(95)00018-V

  • Pohlmann, T. (1996b). Calculating the annual cycle of the vertical eddy viscosity in the North Sea with a three-dimensional baroclinic shelf sea circulation model. Continental Shelf Research, 16(2), 147-161. https://doi.org/10.1016/0278-4343(94)E0037-M

  • Pohlmann, T. (2006). A meso-scale model of the central and southern North Sea: Consequences of an improved resolution. Continental Shelf Research, 26, 2367-2385. https://doi.org/10.1016/j.csr.2006.06.011

  • Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., & Atmadipoera, A. S. (2020). Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian seas. Progress in Oceanography, 184, Article 102312. https://doi.org/10.1016/j.pocean.2020.102312

  • Ray, R., & Susanto, R. D. (2016). Tidal mixing signatures in the Indonesian seas from high-resolution sea surface temperature data. Geophysical Research Letters, 43, 8115-8123. https://doi.org/10.1002/2016gl069485

  • Sprintall, J., Gordon, A. L., Koch-Larrouy, A., Lee, T., Potemra, J. T., Pujiana, K., & Wijffels, S. (2014). The Indonesian Seas and their impact on the Coupled Ocean Climate System. Nature Geoscience, 7, 487-492. https://doi.org/10.1038/NGEO2188

  • Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., & Susanto, R. D. (2019). Detecting change in the Indonesian seas. Frontiers in Marine Science, 6, Article 257. https://doi.org/10.3389/fmars.2019.00257

  • Sprintall, J., Wijffels, S., Gordon, A. L., Field, A., Molcard, R., Susanto, R. D., Soesilo, I., Sopa-heluwakan, J., Surachman, Y., & van Aken H. M. (2004). INSTANT: New international array to measure the Indonesian throughflow. Eos, Transactions American Geophysical Union, 85(39), 369-376.

  • Wetsteyn, F. J., Ilahude, A. G., & Baars, M. A. (1990). Nutrient distribution in the upper 300 m of the eastern Banda Sea and northern Arafura Sea during and after the upwelling season, August 1984 and February 1985. Netherlands Journal of Sea Research, 25(4), 449-464. https://doi.org/10.1016/0077-7579(90)90069-S

  • Wyrtki, K. (1961). Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959-1961, Naga Report vol. 2. The University of California press. https://doi.org/10.1017/S0025315400054370

  • Zijlstra, J. J., Baars, M. A., Tijssen, S. B., Wetsteyn, F. J., Witte, J. I. J., Ilahude, A. G., & Hadikusama. (1990). Monsoonal effects on the hydrography of the upper saters (<300 M) of the eastern Banda sea and northern Arafura sea, with specila reference to vertical transport process. Netherlands Journal of Sea Research, 25(4), 431-447. https://doi.org/10.1016/0077-7579(90)90068-R

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3251-2021

Download Full Article PDF

Share this article

Recent Articles