e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 30 (4) Oct. 2022 / JST-3309-2021


Comparative Computational Study of Double Rotating Cylinder Embedded on Selig S1223 Aerofoil and Flat Plate for High Altitude Platform

Hidayatullah Mohammad Ali, Azmin Shakrine Mohd Rafie, Mohd Faisal Abdul Hamid and Syaril Azrad Md. Ali

Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022


Keywords: Computational fluid dynamic, flat plate, high altitude platform, rotating cylinder, Selig S1223 aerofoil

Published on: 28 September 2022

The high-altitude platform was built as an alternative approach to address the weakness of the terrestrial and satellite communication networks. It can be an aircraft or balloon positioned 20 to 50 km above the earth’s atmosphere. The use of the Magnus effect was not noticeable in the production of the high-altitude platform, while past research study has denoted its aerodynamic performance in generating greater lift and stall angle delay, which would be beneficial in creating such a flying device. This research delineates the proposed designs using the computational fluid dynamics approach utilizing ANSYS WORKBENCH 2019 software. The embedment of the rotating cylinder onto the design would best portray the use of the Magnus effect in generating higher lift coefficients with probable delay in stall angle. Hereby, the design of embedding rotating cylinder onto Selig S1223 aerofoil and the flat plate is proposed to test their aerodynamic performances for high altitude platform purposes. Here, Fluent fluid flow analysis was simulated for 500 RPM and 1000 RPM momentum injection with free stream velocities from 5 m/s to 30 m/s for different angles of attack of 0 to 20 degrees. The analysis has resulted in a greater impact on its lift coefficient and stall angle delay of about 39% and 53% enhancement for modified aerofoil while showing 128% and 204% betterment for modified flat plate than their respective unmodified model. Therefore, it is perceived that the CyFlaP has better stability yet is simplistic in a design suitable for HAP application.

  • Abdulla, N. N., & Hasan, M. F. (2018). Effect of gap between airfoil and embedded rotating cylinder on the airfoil aerodynamic performance. Research & Development in Material Science, 3(4), 1-10.

  • Ahmed, S., Nazari, A., & Wahba, E. (2014). Numerical analysis of separation control over an airfoil section. International Review of Aerospace Engineering, 7(2), 61-68.

  • Ali, H. M., Rafie, A. S. M., Ali, S. A. M., & Gires, E. (2021a). Computational analysis of the rotating cylinder embedment onto flat plate. CFD Letters, 13(12), 133-149.

  • Ali, H. M., Rafie, A. S. M., & Ali, S. A. M. (2021b). Numerical analysis of leading-edge cylinder aerofoil on Selig S1223 for moving surface boundary control. Journal of Aeronautics, Astronautics and Aviation, 53(2), 143-153.

  • ANSYS. (2013) ANSYS fluent theory guide. ANSYS, Inc.

  • Badalamenti, C., & Prince, S. (2008). Effects of endplates on a rotating cylinder in crossflow. In AIAA Applied Aerodynamics Conference. American Institute of Aeronautics Ins.

  • Barati, E., Zarkak, M. R., & Esfahani, J. A. (2019, April 30 - May 2). Effect of rotational direction of circular cylinder for mixed convection at subcritical Reynolds Number. In 27th Annual International Conference of Iranian Society of Mechanical Engineers (ISME 2019) (pp. 1-6). Tehran, Iran.

  • Boye, T. E., Nwaoha, T. C., Olusegun, S. D., & Ashiedu, F. I. (2017). A validation method of computational fluid dynamics (CFD) simulation against experimental data of transient flow in pipes system. American Journal of Engineering Research, 6(6), 67-79.

  • Chunchuzov, I., Kulichkov, S., Perepelkin, V., Popov, O., Firstov, P., Assink, J. D., & Marchetti, E. (2015). Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere. Journal of Geophysical Research: Atmosphere, 120(17), 8828-8840.

  • D’Oliveira, F. A., Melo, F. C. L. D., & Devezas, T. C. (2016). High-altitude platforms - Present situation and technology trends. Journal of Aerospace Technology and Management, 8(3), 249-262.

  • Faisal, K. M., Salam, M. A., Ali, M. T., Sarkar, M. S., Safa, W., & Sharah, N. (2017). Flow control using moving surface at the leading edge of aerofoil. Journal of Mechanical Engineering, 47(1), 45-50.

  • Fidler, F., Knapek, M., Horwath, J., & Leeb, WR. (2010). Optical communications for high-altitude platforms. Journal of Selected Topics in Quantum Electronics, 16(5), (1058-1070).

  • Gowree, E. R., & Prince, S. A. (2012). A computational study of the aerodynamics of a spinning cylinder in a crossflow of high Reynolds number. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences (ICAS’12) (pp. 1138-1147). Academia.

  • Gultom, A., & Yuniarti, D. (2016). Kajian teknologi high altitude platform (HAP)[Study of high altitude platform (HAP) technology]. Buletin Pos Dan Telekomunikasi, 14(1), 1-11.

  • Hamisu, M. T., Jamil, M. M., Umar, U. S., & Sa’ad, A. (2019). Numerical study of flow in asymmetric 2D plane diffusers with different inlet channel lengths. CFD Letters, 11(5), 1-21.

  • Huda, M. N., Ahmed, T., Ahmed, T. S. M., Salam, M. A., Afsar, M. R., Faisal, K. M., & Ali, M. T. (2015). Study of NACA 0010 symmetric airfoil with leading edge rotating cylinder in a subsonic wind tunnel. ResearchGate.

  • Khalil, H., Saqr, K., Eldrainy, Y., & Abdelghaffar, W. (2018). Aerodynamics of a trapped vortex combustor: A comparative assessment of RANS based CFD models. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 43(1), 1-19.

  • Khan, S. A., Bashir, M., Baig, M. A. A., & Ali, F. A. G. M. (2020). Comparing the effect of different turbulence models on the CFD predictions of NACA0018 airfoil aerodynamics. CFD Letters, 12(3), 1-10.

  • Kim, S. E., Choudhury, D., & Patel, B. (1999). Computations of complex turbulent flows using the commercial code FLUENT. In M. D. Salas, J. N. Hefner & L. Sakell (Eds.), Modeling complex turbulent flows (pp. 259-276). Springer.

  • Kölzsch, A., & Breitsamter, C. (2014). Vortex-flow manipulation on a generic delta-wing configuration. Journal of Aircraft, 51(5), 1380-1390.

  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605.

  • Merryisha, S., & Rajendran, P. (2019). CFD validation of NACA 2412 airfoil. ResearchGate.

  • Mgaidi, A. M., Rafie, A. S., Ahmad, K. A., Zahari, R., Hamid, M. F. A., & Marzuki, O. F. (2018). Numerical and experimental analyses of the flow around a rotating circular cylinder at subcritical regime of Reynolds number using K-E and K-Ω-SST turbulent models. ARPN Journal of Engineering and Applied Sciences, 13(3), 954-960.

  • Modi, V. J. (1997). Moving surface boundary-layer control: A review. Journal of Fluids Structures, 11(6), 627-663.

  • Modi, V. J., Fernando, M. S. U. K., & Yokomizo, T. (1991). Moving surface boundary-layer control-Studies with bluff bodies and application. AIAA journal, 29(9), 1400-1406.

  • Monk, D., & Chadwick, E. A. (2017, July 3-6). Comparison of turbulence models effectiveness for a delta wing at low Reynolds numbers. In 7th European Conference for Aeronautics and Space Sciences (EUCASS) (pp. 1-12). Milan, Italy.

  • Oller, S. A., Nallim, L., & Oller, S. (2016). Usability of the Selig S1223 profile airfoil as a high lift hydrofoil for hydrokinetic application. Journal of Applied Fluid Mechanics (JAFM), 9(2), 537-542.

  • Russo, F., & Basse, N. T. (2016). Scaling of turbulence intensity for low-speed flow in smooth pipes. Flow Measurement and Instrumentation, 52, 101-114.

  • Salam, M. A., Deshpande, V., Khan, N. A., & Ali, M. T. (2019). Numerical analysis of effect of leading-edge rotating cylinder on NACA0021 symmetric airfoil. European Journal of Engineering and Technology Research, 4(7), 11-17.

  • Selig, M. S., & Guglielmo, J. J. (1997). High-lift low Reynolds number aerofoil design. Journal of Aircraft, 34(1), 72-79.

  • Selig, M. S., Guglielmo, J. J., Broeren, A. P., & Gigue ́re, P. (1995). Summary of low-speed airfoil data, Volume 1. SoarTech Publications.

  • Selig, M. S., Lyon, C. A., Gigue ́re, P., Ninham, C. P., & Guglielmo, J. J. (1996). Summary of low-speed airfoil data, Volume 2. SoarTech Publications.

  • Šidlof, P., Antoš, P., Šimurda, D., & Štěpán, M. (2017). Turbulence intensity measurement in the wind tunnel used for airfoil flutter investigation. EPJ Web of Conferences, 143, Article 02107.

  • Torres, G. E. (2002). Aerodynamics of low aspect ratio wings at low Reynolds numbers with applications to micro air vehicle design and optimization (Publication No. 3040583). (Doctoral dissertation). University of Notre Dame, USA.

  • Tozer, T., & Grace, D. (2001). High-altitude platforms for wireless communications. IEE Electronics & Communication Engineering Journal, 13(3), 127-137.

  • Wang, S., Zhang, X., He, G., & Liu, T. (2013). A lift formula applied to low-Reynold-number unsteady flows. Physics of Fluid, 25, Article 093605.

  • Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence models. American Institute of Aeronautics and Astronautics Journal, 26(11), 1299-1310.

  • Wolff, E. B. (1925). Preliminary investigation of the effect of a rotating cylinder in a wing (No. NACA-TM-307). National Advisory Committee for Aeronautics.

  • Yao, Q., Zhou, C. Y., & Wang, C. (2016). Numerical study of the flow past a rotating cylinder at supercritical Reynolds number. In Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering (p. 813-816). Atlantis Press.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Recent Articles