Home / Regular Issue / JST Vol. 31 (2) Mar. 2023 / JST-3540-2022


The Impact of Calcium Chloride in Cementation Solution on Microbial Induced Calcite Precipitation: A Systematic Review

Aljohani Waad Awdah Saad, Siti Norathirah Mohd Anas, Nor Safiqah Seminin, Putri Nur Suhaina Naim, Dardau Abdulaziz, Rusea Go, Nor Azwady Abdul Aziz, Mona Fatin Syazwanee Mohamed Ghazali and Muskhazli Mustafa

Pertanika Journal of Science & Technology, Volume 31, Issue 2, March 2023

DOI: https://doi.org/10.47836/pjst.31.2.14

Keywords: Calcite, calcium chloride, permeability, polymorph, unconfined compressive strength, vaterite

Published on: 20 March 2023

This review aims to quantify the impact of calcium chloride in cementation solutions on Microbial Induced Calcite Precipitation (MICP). Specific soil strength properties, such as the Unconfined Compressive Strength (UCS) test, permeability (k) and calcium carbonate content of the soil, form the basis of quantifying the test results. Relevant articles from various online databases such as Scopus, Science Direct, ProQuest Dissertations and Theses Global (PQDT), Mendeley and Google Scholar are obtained with search strings of suitable keywords. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were used to screen and select related articles based on exclusion and inclusion characteristics. This review shows a positive correlation between calcium concentrations and soil strength properties, where higher concentrations of calcium solutions induce stronger bonding between soil particles due to better calcite precipitation. However, we also note a reversed correlation when the concentration of calcium solutions is higher than 1 M. This review also verifies that the MICP process enhances soil strength using optimum calcium chloride concentration to avoid soil brittleness. This result benefits other fields, such as agricultural and soil engineering.

  • Al Qabany, A., & Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique, 63(4), 331-339. https://doi.org/10.1680/geot.SIP13.P.022

  • Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992-1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666

  • Al-Thawadi, S., Cord-Ruwisch, R., & Bououdina, M. (2012). Consolidation of sand particles by nanoparticles of calcite after concentrating ureolytic bacteria in situ. International Journal of Green Nanotechnology: Biomedicine, 4(1), 28-36. http://dx.doi.org/10.1080/19430892.2012.654741

  • Bosak, T., & Newman, D. K. (2005). Microbial kinetic controls on calcite morphology in supersaturated solutions. Journal of Sedimentary Research, 75(2), 190-199. http://dx.doi.org/10.2110/jsr.2005.015

  • Chahal, N., Rajor, A., & Siddique, R. (2011). Calcium carbonate precipitation by different bacterial strains. African Journal of Biotechnology, 10(42), 8359-8372. https://doi.org/10.5897/AJB11.345

  • Cheng, L., Shahin, M. A., & Cord-Ruwisch, R. (2014). Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Geotechnique, 64(12), 1010-1013. https://doi.org/10.1680/geot.14.T.025

  • Choi, S. G., Chu, J., Brown, R. C., Wang, K., & Wen, Z. (2017). Sustainable biocement production via microbially induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass. ACS Sustainable Chemical and Engineering, 5, 5183-5190. https://doi.org/10.1021/acssuschemeng.7b00521

  • Chunxiang, Q., Jianyun, W., Ruixing, W., & Liang, C. (2009). Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Materials Science and Engineering C, 29(4), 1273-1280. https://doi.org/10.1016/j.msec.2008.10.025

  • Chuo, S. C., Mohamed, S. F., Setapar, S. H. M., Ahmad, A., Jawaid, M., Wani, W. A., & Ibrahim, M. N. M. (2020). Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials, 13(21), 1-28. https://doi.org/10.3390/ma13214993

  • Cui, M. J., Zheng, J. J., Chu, J., Wu, C. C., & Lai, H. J. (2021). Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotechnica, 16, 1377-1389. https://doi.org/10.1007/s11440-020-01099-0

  • Dardau, A. A., Mustafa, M., & Aziz, N. A. A. (2021). Microbial-induced calcite precipitation: A milestone towards soil improvement. Malaysian Applied Biology, 50(1), 11-27. https://doi.org/10.55230/mabjournal.v50i1.9

  • De Muynck, W., Verbeken, K., De Belie, N., & Verstraete, W. (2010). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. American Society for Microbiology, 36(2), 99-111. https://doi.org/10.1016/j.ecoleng.2009.03.025

  • DeJong, J. T., Fritzges, M. B., & Nüsslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)

  • DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029

  • Duo, L., Kan-liang, T., Hui-li, Z., Yu-yao, W., Kang-yi, N., & Shi-can, Z. (2018). Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation. Construction and Building Materials, 172, 251-262. https://doi.org/10.1016/j.conbuildmat.2018.03.255

  • Feng, K., & Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 1-9. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379

  • Ganendra, G., De Muynck, W., Ho, A., Arvaniti, E. C., Hosseinkhani, B., Ramos, J. A., Rahier, H., & Boon, N. (2014). Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP. Applied and Environmental Microbiology, 80, 4659-4667. https://doi.org/10.1128/AEM.01349-14

  • Gebru, K. A., Kidanemariam, T. G., & Gebretinsae, H. K. (2021). Bio-cement production using microbially induced calcite precipitation (MICP) method: A review. Chemical Engineering Science, 238, Article 116610. https://doi.org/10.1016/j.ces.2021.116610

  • Golovkina, D. A., Zhurishkina, E. V., Ivanova, L. A., Baranchikov, A. E., Sokolov, A. Y., Bobrov, K. S., Masharsky, A. E., Tsvigun, N. V., Kopitsa, G. P., & Kulminskaya, A. A. (2020). Calcifying bacteria flexibility in induction of CaCO3 mineralization. Life, 10(12), Article 317. https://doi.org/10.3390/life10120317

  • Hua B., D &ng B., Thornton E. C., Yang J., & Amonette J.E. (2007). Incorporation of chromate into calcium carbonate structure during coprecipitation. Water Air and Soil Pollution, 179, 381-390. https://doi.org/10.1007/s11270-006-9242-7

  • Kadhim, F. J., & Zheng, J. (2017). Influences of calcium sources and type of sand on microbial carbonate precipitation. International Journal of Advances in Engineering & Technology, 10(1), 20-29.

  • Koestel, J., Dathe, A., Skaggs, T. H., Klakegg, O., Ahmad, M. A., Babko, M., Gim´enez, D., Farkas, C., Nemes, A., & Jarvis, N. (2018). Estimating the permeability of naturally structured soil from percolation theory and pore space characteristics imaged by Xray. Water Resources Research, 54(11), 9255-9263. https://doi.org/10.1029/2018WR023609

  • Lapierre, F. M., Schmid, J., Ederer, B., Ihling, N., Büchs, J., & Huber, R. (2020). Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media. Scientific Reports, 10, Article 22448. https://doi.org/10.1038/s41598-020-79904-9

  • Liang, S., Chen, J., Niu, J., Gong, X., & Feng, D. (2020). Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Marine Georesources & Geotechnology, 38(4), 393-399. https://doi.org/10.1080/1064119X.2019.1575939

  • Lu, W., Qian, C., & Wang, R. (2010). Study on soil solidification based on microbiological precipitation of CaCO3. Science China Technological Sciences, 53, 2372-2377. https://doi.org/10.1007/s11431-010-4060-y

  • Mujah, D., Liang, C., & Shahin, M. A. (2019). Microstructural and geomechanical study on biocemented sand for optimization of MICP process. Journal of Materials in Civil Engineering, 31(4), 1-10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660

  • Nemati, M., Greene, E. A., & Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry, 40(2), 925-933. https://doi.org/10.1016/j.procbio.2004.02.019

  • Ng, W. S., Lee, M. L., Tan, C. K., & Hii, S. L. (2013). Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE Journal of Civil Engineering, 17, 718-728. https://doi.org/10.1007/s12205-013-0149-8

  • Okwadha, G. D. O., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143-1148. https://doi.org/10.1016/j.chemosphere.2010.09.066

  • Shahrokhi-Shahraki, R., Zomorodian, S. M. A., Niazi, A., & O’Kelly, B. C. (2014). Improving sand with microbial-induced carbonate precipitation. Proceedings of the Institution of Civil Engineers-Ground Improvement, 168(3), 217-230. https://doi.org/10.1680/grim.14.00001

  • Sheikh, S. A., & Atmapoojya, S. L. (2022). Experimental study on factors affecting the efficiency of microbially induced carbonate precipitation in soil. Materials Today: Proceedings, 60(Part 1), 275-280. https://doi.org/10.1016/j.matpr.2021.12.530

  • Soon, N. W., Lee, L. M., Khun, T. C., & Ling, H. S. (2014). Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 140(5), 1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089

  • Velpuri, N. V. P., Yu, X., Lee, H., & Chang, W. (2016). Influence factors for microbial-induced calcite precipitation in sands. In W. C. Cheng & J. Y. Wu (Eds.), Geo-China 2016: Innovative and Sustainable use of Geomaterials and Geosystems (pp. 44-52). ASCE Library. https://doi.org/10.1061/9780784480069.006

  • Wei, S., Cui, H., Jiang, Z., Liu, H., He, H., & Fang, N. (2015). Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology, 46(2), 455-464. https://doi.org/10.1590/S1517-838246220140533

  • Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement (Doctoral dissertation). Murdoch University, Australia. https://researchrepository.murdoch.edu.au/id/eprint/399/2/02Whole.pdf.

  • Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423. https://doi.org/10.1080/01490450701436505

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Related Articles