e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (3) Apr. 2023 / JST-3811-2022


An Alternative Count Distribution for Modeling Dispersed Observations

Ademola Abiodun Adetunji and Shamsul Rijal Muhammad Sabri

Pertanika Journal of Science & Technology, Volume 31, Issue 3, April 2023


Keywords: Count observations, cubic rank transmutation, mixed Poisson distribution

Published on: 7 April 2023

In most cases, count data have higher variances than means; hence using the Poisson distribution to model such observations is misleading because of the equality of the Poisson mean and variance. This study proposes a new two-parameter mixed Poisson distribution for modeling dispersed count observations. The exponential distribution is transmuted to obtain a new mixing distribution for the new proposition. Different moment-based mathematical properties of the new proposition are obtained. Applications using dispersed count observations with excess zero are made. Comparisons with related distributions for modeling dispersed observation reveal that the new distribution performs creditably well.

  • Adetunji, A. A., & Sabri, S. R. M. (2021). Modelling claim frequency in insurance using count models. Asian Journal of Probability and Statistics, 14(4), 14-20.

  • Aguilar, G. A. S., Moala, F. A., & Cordeiro, G. M. (2019). Zero truncated poisson exponentiated gamma distribution : Application and estimation methods. Journal of Statistical Theory and Practice, 13(4), 1-20 .

  • Al-kadim, K. A. (2018). Proposed generalized formula for transmuted distribution. Journal of Babylon University, Pure and Applied Sciences, 26(4), 66-74.

  • Asamoah, K. (2016). On the credibility of insurance claim frequency: Generalized count models and parametric estimators. Insurance: Mathematics and Economics, 70, 339-353.

  • Bhati, D., Sastry, D. V. S., & Maha Qadri, P. Z. (2015). A new generalized poisson-lindley distribution: Applications and properties. Austrian Journal of Statistics, 44(4), 35-51.

  • Chakraborty, S. (2010). On some distributional properties of the family of weighted generalized poisson distribution. Communications in Statistics - Theory and Methods, 39(15), 2767-2788.

  • Das, K. K., Ahmed, I., & Bhattacharjee, S. (2018). A new three-parameter poisson-lindley distribution for modelling over-dispersed count data. International Journal of Applied Engineering Research, 13(23), 16468-16477.

  • De Jong, P., & Heller, G. Z. (2008). Generalized Linear Models for Insurance Data. Cambridge University Press.

  • Frees, E. W. (2010). Regression Modeling with Actuarial and Financial Applications. Cambridge University Press.

  • Frees, E. W., & Valdez, E. A. (2008). Hierarchical insurance claims modeling. Journal of the American Statistical Association, 103(484), 1457-1469.

  • Greenwood, M., & Yule, G. U. (1920). An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents. Journal of the Royal Statistical Society, 83(2), Article 255.

  • Holgate, P. (1970). The modality of some compound poisson distributions. Biometrika, 87(3), 666-667.

  • Karina, T. M., Nurrohmah, S., & Fithriani, I. (2019). Heterogeneous Weibull count distribution. Journal of Physics: Conference Series, 1218(1), Article 012020.

  • Karlis, D., & Xekalaki, E. (2005). Mixed poisson distributions. International Statistical Review, 73(1), 35-58.

  • Kemp, C. D., & Kemp, A. W. (1965). Some propoerties of the Hermite distribution. Biometrika, 52(3-4), 381-394.

  • Mohammed, Y. A., Yatim, B., & Ismail, S. (2015). Mixture model of the exponential, Gamma and Weibull distributions to analyse heterogeneous survival data. Journal of Scientific Research and Reports, 5(2), 132-139.

  • Omari, C. O., Nyambura, S. G., & Mwangi, J. M. W. (2018). Modeling the frequency and severity of auto insurance claims using statistical distributions. Journal of Mathematical Finance, 8(1), 137-160.

  • Ong, S. H., Low, Y. C., & Toh, K. K. (2021). Recent developments in mixed poisson distributions. ASM Science Journal, 14(3), 1-10.

  • R-Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

  • Rasekhi, M., Alizadeh, M., Altun, E., Hamedani, G., Afify, A. Z., & Ahmad, M. (2017). The modified exponential distribution with applications. Pakistan Journal of Statistics, 33(5), 383-398.

  • Sah, B. K., & Mishra, A. (2019). A Generalised Exponential-Lindley Mixture of Poisson Distribution. Nepalese Journal of Statistics, 3, 11-20.

  • Samutwachirawong, S. (2021). Poisson-exponential and Gamma distribution: Properties and applications. Journal of Applied Statistics and Information Technology, 6(2), 17-24.

  • Sankaran, M. (1970). 275. Note: The discrete poisson-lindley distribution. Biometrics, 26(1), 145-149.

  • Shaked, M. (1980). On mixtures from exponential families. Journal of Royal Statistical Society. Series B (Methodological), 42(2), 192-198.

  • Shanker, R., & Hagos, F. (2015). On poisson-lindley distribution and its applications to biological sciences. Biometrics and Biostatistics International Journal, 2(5), 1-5.

  • Shanker, R., & Mishra, A. (2014). A Two-Parameter Poisson-Lindley distribution. International Journal of Statistics and Systems, 9(1), 79-85.

  • Shanker, R., & Mishra, A. (2016). A Quasi Poisson-Lindley distribution. Journal of the Indian Statistical Association, 54(1), 113-125.

  • Willmot, G. E. (1990). Asymptotic tail behaviour of poisson mixtures with applications. Advances in Applied Probability, 22(1), 147-159.

  • Zakerzadeh, H., & Dolati, A. (2009). Generalized Lindley distribution. Journal of Mathematical Extension, 3(2), 1-17.

  • Zamani, H., Ismail, N., & Faroughi, P. (2014). Poisson-weighted exponential univariate version and regression model with applications. Journal of Mathematics and Statistics, 10(2), 148-154.