Home / Regular Issue / JST Vol. 32 (2) Mar. 2024 / JST-4368-2023

 

Performance of Waste Cooking Oil Esterification for Biodiesel Production Using Various Catalysts

Indah Thuraya Herman, Khairuddin Md Isa, Naimah Ibrahim, Saiful Azhar Saad, Tuan Amran Tuan Abdullah, Mohd Aizudin Abd Aziz and Muhammad Auni Hairunnaja

Pertanika Journal of Science & Technology, Volume 32, Issue 2, March 2024

DOI: https://doi.org/10.47836/pjst.32.2.10

Keywords: Biodiesel, deep eutectic solvents, heterogeneous catalysts, waste cooking oil

Published on: 26 March 2024

In this study, waste cooking oil (WCO) with high free fatty acid (FFA) content was esterified to produce biodiesel, and the catalysts’ performance was investigated. Two deep eutectic solvents (DESs) were employed as the liquid catalysts (K2CO3-Gly and KOH-Gly), while the solid heterogeneous catalysts used were spent bleaching earth (SBE), KCC-1, and Na/KCC-1. DESs were prepared by mixing at reaction temperature and time of 80°C and 120 min, respectively. The American Standard Testing Method (ASTM) D974 determined the acid value. The catalysts were first screened for their catalytic activity in WCO esterification. The parameters investigated in this study were oil-to-methanol molar ratio, catalyst loading, reaction time, and temperature. The highest conversion (94.7%) was obtained using Na/KCC-1. The performance of solid and liquid catalysts was evaluated using KOH-Gly and SBE for the reduction of FFA in WCO under different conditions of oil-to-methanol molar ratio (1:6–1:10), catalysts loading (0.2–2.0 g), reaction time (30–60 min), and temperature (40–100°C). The highest reduction of FFA in the esterification process for KOH-Gly and SBE as catalysts was 97.74% and 84.2%, respectively. Transesterification of the esterified oil shows a promising result (97%), and the process can potentially be scaled up. The GC-MS result shows that the produced oil has the highest percentage of hexadecanoic acid and methyl ester.

  • Al-Sakkari, E. G., Abdeldayem, O. M., El-Sheltawy, S. T., Abadir, M. F., Soliman, A., Rene, E. R., & Ismail, I. (2020). Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study. Fuel, 279, Article 118519. https://doi.org/10.1016/j.fuel.2020.118519

  • Al-Sakkari, E. G., El-Sheltawy, S. T., Abadir, M. F., Attia, N. K., & El Diwani, G. (2017). Investigation of cement kiln dust utilization for catalyzing biodiesel production via response surface methodology. International Journal of Energy Research, 41(4), 593-603. https://doi.org/10.1002/er.3635

  • Alhassan, F. H., Rashid, U., & Taufiq-Yap, Y. H. (2015). Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO42−/ZrO2 nanoparticle solid catalyst. Fuel, 142, 38-45. https://doi.org/10.1016/j.fuel.2014.10.038

  • Ali, R. M., Elkatory, M. R., & Hamad, H. A. (2020). Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel, 268, Article 117297. https://doi.org/10.1016/j.fuel.2020.117297

  • Azahar, N. I., Mokhtar, N. M., Mahmood, S., Aziz, M. A. A., & Arifin, M. A. (2023). Evaluation of Piper betle L. extracts and its antivirulence activity towards P. Aeruginosa. Jurnal Teknologi, 85(1), 133-140. https://doi.org/10.11113/jurnalteknologi.v85.18892

  • Azhar, M. A., Rahman, N. W. A., Aziz, M. A. A., & Isa, K. M. (2021). Identification of chemical compounds from agarwood hydrosol (Aquilaria malaccensis) fruits via LC-QTOF-MS/MS analysis. IOP Conference Series: Earth and Environmental Science, 765, Article 012010. https://doi.org/10.1088/1755-1315/765/1/012010

  • Aziz, M. A. A., Isa, K. M., & Rashid, R. A. (2017). Pneumatic jigging: Influence of operating parameters on separation efficiency of solid waste materials. Waste Management and Research, 35(6), 647-655. https://doi.org/10.1177/0734242X17697815

  • Aziz, M. A., Yusop, A. F., Yasin, M. H. M., Hamidi, M. A., Alias, A., Hussin, H., & Hamri, S. (2017). Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic. IOP Conference Series: Materials Science and Engineering, 257, Article 012079. https://doi.org/10.1088/1757-899X/257/1/012079

  • Bhatia, S. K., Gurav, R., Choi, T., Kim, H. J., Yang, S., Song, H., Park, J. Y., Park, Y., Han, Y., Choi, Y., Kim, S., Yoon, J., & Yang, Y. (2020). Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Bioresource Technology, 302, Article 122872. https://doi.org/10.1016/j.biortech.2020.122872

  • Bobadilla, M. C., Lorza, R. L., García, R. E., Gómez, F. S., & González, E. P. V. (2017). An improvement in biodiesel production from waste cooking oil by applying thought multi-response surface methodology using desirability functions. Energies, 10(1), Article 130. https://doi.org/10.3390/en10010130

  • Boffito, D. C., Pirola, C., Galli, F., Di Michele, A., & Bianchi, C. (2013). Free fatty acids esterification of waste cooking oil and its mixtures with rapeseed oil and diesel. Fuel, 108, 612-619. https://doi.org/10.1016/j.fuel.2012.10.069

  • Chandraseagar, S., Abdulrazik, A. H., Abdulrahman, S. N., & Abdaziz, M. A. (2019). Aspen Plus simulation and optimization of industrial spent caustic wastewater treatment by wet oxidation method. IOP Conference Series: Materials Science and Engineering, 702, Article 012011. https://doi.org/10.1088/1757-899X/702/1/012011

  • Changmai, B., Vanlalveni, C., Ingle, A. P., Bhagat, R., & Rokhum, S. L. (2020). Widely used catalysts in biodiesel production: A review. RSC Advances, 10, 41625-41679. https://doi.org/10.1039/D0RA07931F

  • Chongkhong, S., Tongurai, C., Chetpattananondh, P., & Bunyakan, C. (2007). Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy, 31, 563- 568. https://doi.org/10.1016/j.biombioe.2007.03.001

  • Chuah, L. F., Yusup, S., Aziz, A. R. A., Klemeš, J. J., Bokhari, A., & Abdullah, M. Z. (2016). Influence of fatty acids content in non-edible oil for biodiesel properties. Clean Technologies and Environmental Policy, 18, 473-482. https://doi.org/10.1007/s10098-015-1022-x

  • Dahawi, Y. A., Abdulrazik, A., Seman, M. N. A., Aziz, M. A. A., & Yunus, M. Y. M. (2019). Aspen plus simulation of bio-char production from a biomass-based slow pyrolysis process. Key Engineering Materials, 797, 336-341. https://doi.org/10.4028/www.scientific.net/KEM.797.336

  • Farabi, M. S. A., Ibrahim, M. L., Rashid, U., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 181, 562-570. https://doi.org/10.1016/j.enconman.2018.12.033

  • Fatt, L. C., Rahman, N. W. A., Aziz, M. A. A., & Isa, K. M. (2021). Identification of the chemical constituents of curcuma caesia (Black Turmeric) hydrosol extracted by hydro-distillation method. IOP Conference Series: Earth and Environmental Science, 765, Article 012025. https://doi.org/10.1088/1755-1315/765/1/012025

  • Gan, M., Pan, D., Ma, L., Yue, E., & Hong, J. (2009). The kinetics of the esterification of free fatty acids in waste cooking oil using Fe2(SO4)3/C Catalyst. Chinese Journal of Chemical Engineering, 17(1), 83-87. https://doi.org/10.1016/S1004-9541(09)60037-9

  • Gan, S., Ng, H. K., Ooi, C. W., Motala, N. O., & Ismail, M. A. F. (2010). Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil. Bioresource Technology, 101(19), 7338-7343. https://doi.org/10.1016/j.biortech.2010.04.028

  • Hamid, M. Y. S., Triwahyono, S., Jalil, A. A., Jusoh, N. W. C., Izan, S. M., & Abdullah, T. A. T. (2018). Tailoring the properties of metal oxide loaded/KCC-1 toward a different mechanism of CO2 methanation by in situ IR and ESR. Inorganic Chemistry, 57(1), 5859-5869. https://doi.org/10.1021/acs.inorgchem.8b00241

  • Hanif, M. A., Ibrahim, N., Isa, K. M., Abdullah, T. A. T., & Jalil, A. A. (2021). Sulfur dioxide removal by mesoporous silica KCC-1 modified with low-coverage metal nitrates. Materials Today: Proceedings, 47(Part 6), 1323-1328. https://doi.org/10.1016/j.matpr.2021.02.807

  • Hayyan, A., Hashim, M. A., Hayyan, M., Mjalli, F. S., & Alnashef, I. M. (2014). A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent. Journal Clean Production, 65, 246-251. https://doi.org/10.1016/j.jclepro.2013.08.031

  • Herman, I. T., Isa, K. M., Ibrahim, N., Kasim, F. H., & Aziz, M. A. A. (2021). A single step transesterification process to produce biodiesel from the spent cooking oil. IOP Conference Series: Earth and Environmental Science, 765, Article 012077. https://doi.org/10.1088/1755-1315/765/1/012077

  • Herman, I. T., Mukhrofun, F., Md Isa, K., Ibrahim, N., & Aziz, M. A. A. (2021). Methanolysis of Ceiba Petandra (Kapok) seed for high yield fatty acid methyl ester (FAME): A parametric study. IOP Conference Series: Earth and Environmental Science 765, Article 012075. https://doi.org/10.1088/1755-1315/765/1/012075

  • Isa, K. M., Kasim, F. H., Saad, S. A., Rahim, M. A. A., Aziz, M. A. A., & Ali, U. F. M. (2017). Influence of operating parameters on biomass conversion under sub- and supercritical water conditions. Chemical Engineering and Technology, 40(3), 537-545. https://doi.org/10.1002/ceat.201600343

  • Ismail, N. A., Aziz, M. A. A., Hisyam, A., & Abidin, M. A. (2021). Separation of samarium from medium rare earth mixture using multi-stage counter-current extraction. Chemical Engineering Communications, 208(5), 764-774. https://doi.org/10.1080/00986445.2020.1746654

  • Ismail, N. A., Yunus, M. M., Aziz, M. A. A., & Abidin, M. A. (2019). Comparison of optimal solvent extraction stages between P204 and [A336][P204] for the separation of europium and gadolinium. IOP Conference Series: Materials Science and Engineering, 702, Article 012044. https://doi.org/10.1088/1757-899X/702/1/012044

  • Japar, N. S., A. Aziz, M. A., & Razali, M. N. (2019). Formulation of fumed silica grease from waste transformer oil as base oil. Egyptian Journal of Petroleum, 28(1), 91-96. https://doi.org/10.1016/j.ejpe.2018.12.001

  • Kadapure, S. A., Kiran, A., Anant, J., Dayanand, N., Rahul, P., & Poonam, K. (2017). Optimization of conversion of Pongamia pinnata oil with high FFA to biodiesel using novel deep eutectic solvent. Journal of Environmental Chemical Engineering, 5(6), 5331-5336. https://doi.org/10.1016/j.jece.2017.10.018

  • Kanda, L. R. S., Corazza, M. L., Zatta, L., & Wypych, F. (2017). Kinetics evaluation of the ethyl esterification of long chain fatty acids using commercial montmorillonite K10 as catalyst. Fuel, 193, 265-274. https://doi.org/10.1016/j.fuel.2016.12.055

  • Mahmud, M. S., Ishak, S., Razali, M. N., Aziz, M. A. A., & Musa, M. (2019). Grease quality issues on middle voltage switchgear: Corrosivity, resistivity, safety and ageing. IIUM Engineering Journal, 20, 216-228. https://doi.org/10.31436/iiumej.v20i1.995

  • Malins, K., Brinks, J., Kampars, V., & Malina, I. (2016). Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Applied Catalysis A: General, 519, 99-106. https://doi.org/10.1016/j.apcata.2016.03.020

  • Manurung, R., Arief, A., & Hutauruk, G. R. (2018). Purification of red palm biodiesel by using K2CO3 based deep eutectic solvent (DES) with glycerol as hydrogen bond donor (HBD). In AIP Conference Proceedings (Vol. 1977, No. 1). AIP Publishing. https://doi.org/10.1063/1.5042866

  • Manurung, R., Hutauruk, G. R., & Arief, A. (2018). Vitamin E extraction from redpalm biodiesel by using K2CO3 based deep eutectic solvent with glycerol as hydrogen bond donor. In AIP Conference Proceedings (Vol. 1977, No. 1). AIP Publishing. https://doi.org/10.1063/1.5042867

  • Manurung, R., & Liang, A. (2018). Minor component extraction from palm methyl ester using potassium carbonate glycerol based deep eutectic solvent (DES). Rasayan Journal of Chemistry, 11(4), 1519-1524. http://dx.doi.org/10.31788/RJC.2018.1143079

  • Nguyen, H. C., Nguyen, M. L., Wang, F., Juan, H., & Su, C. (2020). Biodiesel production by direct transesterification of wet spent coffee grounds using switchable solvent as a catalyst and solvent. Bioresource Technology, 296, Article 122334. https://doi.org/10.1016/j.biortech.2019.122334

  • Petračić, A., Gavran, M., Skunca, L., Stajduhar, L., & Sander, A. (2020). Deep eutectic solvents for purification of waste cooking oil and crude biodiesel. Technologica Acta, 13(1), 21-26. http://dx.doi.org/10.5281/zenodo.4059934

  • Pourvusughi, N. (2012). An optimized process for biodiesel production from high FFA spent bleaching earth. International Journal of Engineering, 26(12), 1546-1550.

  • Rabie, A. M., Shaban, M., Abukhadra, M. R., Hosny, R., Ahmed, S. A., & Negm, N. A. (2019). Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids, 279, 224-231. https://doi.org/10.1016/j.molliq.2019.01.096

  • Rahman, N. W. B. A., & Aziz, M. A. B. A. (2022). The effects of additives on anti-wear properties of lubricating grease formulated from waste engine oil. Egyptian Journal of Petroleum, 31(3), 71-76. https://doi.org/10.1016/j.ejpe.2022.07.002

  • Rahman, N. W. A., Japar, N. S. A., Aziz, M. A. A., Razik, A. H. A., & Yunus, M. Y. M. (2019). Sodium grease formulation from waste engine oil. IOP Conference Series: Earth and Environmental Science, 257, Article 012018. https://doi.org/10.1088/1755-1315/257/1/012018

  • Razali, M. N., Aziz, M. A. A., Jamin, N. F. M., & Salehan, N. A. M. (2018). Modification of bitumen using polyacrylic wig waste. In AIP Conference Proceedings (Vol. 1930, No. 1). AIP Publishing. https://doi.org/10.1063/1.5022945

  • Razali, M. N., Isa, S. N. E. M., Salehan, N. A. M., Musa, M., Aziz, M. A. A., Nour, A. H., & Yunus, R. M. (2020). Formulation of emulsified modification bitumen from industrial wastes. Indonesian Journal of Chemistry, 20(1), 96-104. https://doi.org/10.22146/ijc.40888

  • Sander, A., Petračić, A., Parlov Vuković, J., & Husinec, L. (2020). From coffee to biodiesel - Deep eutectic solvents for feedstock and biodiesel purification. Separations, 7(2), Article 22. https://doi.org/10.3390/separations7020022

  • Shahbaz, K., Bagh, F. S. G., Mjalli, F. S., Alnashef, I. M., & Hashim, M. A. (2013). Prediction of refractive index and density of deep eutectic solvents using atomic contributions. Fluid Phase Equilibria, 354, 304-311. https://doi.org/10.1016/j.fluid.2013.06.050

  • Sofi, S. N. A. M., Aziz, M. A. A., Japar, N. S. A., Rahman, N. W. A., Abdulhalim, A. R., & Yunus, M. M. M. (2019). Preparation and characterization of grease formulated from waste transformer oil. IOP Conference Series: Materials Science and Engineering, 702, Article 012034. http://dx.doi.org/10.1088/1757-899X/702/1/012034

  • Sumarlan, I., & Mentari, R. B. (2020). Esterification of waste cooking oil using heterogeneous catalyst from pearl shell. Jurnal Akademika Kimia, 9(3), 183-190.

  • Taslim, Indra, L., Manurung, R., Winarta, A., & Ramadhani, D. A. (2017). Biodiesel production from ethanolysis of DPO using deep eutectic solvent (DES) based choline chloride - ethylene glycol as co-solvent. In AIP Conference Proceedings (Vol. 1823, No. 1). AIP Publishing. https://doi.org/10.1063/1.4978079

  • Thoai, D. N., Le Hang, P. T., & Lan, D. T. (2019). Pre-treatment of waste cooking oil with high free fatty acids content for biodiesel production: An optimization study via response surface methodology. Vietnam Journal of Chemistry, 57(5), 568-573. https://doi.org/10.1002/vjch.201900072

  • Yusuff, A. S., & Popoola, L. T. (2019). Optimization of biodiesel production from waste frying oil over alumina supported chicken eggshell catalyst using experimental design tool. Acta Polytechnica, 59(1), 88-97. https://doi.org/10.14311/AP.2019.59.0088

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4368-2023

Download Full Article PDF

Share this article

Related Articles