Home / Regular Issue / JST Vol. 32 (2) Mar. 2024 / JST-4451-2023

 

Application of the Ultrasonic Method to Produce Starch Nanoparticles from Cassava Starch

Beni Hidayat, Vida Elsyana and Sheniah Glori Simorangkir

Pertanika Journal of Science & Technology, Volume 32, Issue 2, March 2024

DOI: https://doi.org/10.47836/pjst.32.2.24

Keywords: Cassava starch, starch nanoparticles, ultrasonic

Published on: 26 March 2024

Starch nanoparticles have the potential to be developed as a cassava starch derivative. The research aims to obtain the optimal process conditions (ultrasonic process time and starch concentration) to produce starch nanoparticles with the best characteristics. The treatment variables used in this study were the duration of the ultrasonication process (30, 60, and 90 minutes) and the starch concentration (1%, 2%, and 3%). The results showed that the ultrasonication process time and starch concentration affected the yield, particle size and distribution, polydispersity index, optical characteristics (transmittance), and clarity score of starch nanoparticles. Ultrasonic process time of 90 minutes and starch concentration of 3% will produce starch nanoparticle products with a yield of 13.68%, particle size ≤ 100 nm of 23.6%, average particle size of 230.8 nm with polydispersity index of 0.581, transmittance value of 61.27%, and a solution clarity score of 3.80 (not clear). Tapioca-based SNPs can be developed solely with ultrasonic method to simplify the process.

  • BeMiller, J., & Whistler, R. (2009). Starch: Chemistry and Technology (3rd ed.). Academic Press.

  • Bonto, A. P., Tiozon, R. N., Sreenivasulu, N., & Camacho, H. (2021). Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrasonic Sonochemistry, 71, Article 105383. https://doi.org/10.1016/j.ultsonch.2020.105383

  • Boufi, S., Haaj, S. B., Magnin, A., Pignon, F., & Mortha, G. (2018). Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonic Sonochemistry, 41, 327-336. http://dx.doi.org/10.1016/j.ultsonch.2017.09.033

  • BPS-Statistics of Lampung Province. (2022). Lampung Province in Figure 2021. https://lampung.bps.go.id/publication/2021/02/26/443c020eb6a33a394e6d3df4/provinsi-lampung-dalam-angka-2021.html

  • Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P., & Rosiak, J. M. (2005). Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers, 60, 175-184. https://doi.org/10.1016/j.carbpol.2004.12.001

  • EFSA Scientific Committee. (2011). Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA Journal, 9(5), Article 2140. https://doi.org/10.2903/j.efsa.2011.2140

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6, 628-647. https://doi.org/10.1007/s11947-012-0944-0

  • Garcia, N. L., Ribbon, L., Dufresne, A., Aranguren, M., & Goyanes S. (2011). Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydrate Polymers, 84(1), 203-210. https://doi.org/10.1016/j.carbpol.2010.11.024

  • Goncalves, P. M., Norena, C. P. Z., Silveira, N. P., & Brandelli, A. (2014). Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT - Food Science and Technology, 58, 21-27. https://dx.doi.org/10.1016/j.lwt.2014.03.015

  • Haaj, S. B., Magnin, A., Pétrier, C., & Boufi, S. (2013). Starch nanoparticles formation via high power ultrasonication. Carbohydrate Polymers, 92,1625-1632. https://doi.org/10.1016/j.carbpol.2012.11.022

  • Hidayat, B., Hasanuddin, U., Nurdjanah, S., Yuliana, N., Muslihudin, M., & Akmal, S. (2021). Application of partial gelatinization autoclaving-cooling process to increase the resistant starch content of fermented cassava pulp flour-based composite flour. Asian Journal of Agriculture and Biology, 2021(3), 1-10. https://doi.org/10.35495/ajab.2020.09.483

  • Jambrak, A. N., Herceg, Z., Šubaric, D., Babic, J., Brncic, M., Brncic, S. R., Bosiljkov, T., Cvek, D., Tripalo, B., & Boufi, S. (2010). Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers, 79, 91-100. https://dx.doi.org/10.1016/j.carbpol.2009.07.051

  • Kim, H. Y., Park, D. J., Kim, J. Y., & Lim, S. T. (2013). Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydrate Polymer, 98, 295-301. https://dx.doi.org/10.1016/j.carbpol.2013.05.085

  • Kumari, S., Yadav, B. S., & Yadav, R, B. (2020). Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Research International, 128, Article 108765. https://doi.org/10.1016/j.foodres.2019.108765

  • Lamanna, M., Morales, N. J., Garcia, N. L., & Goyanes, S. (2013). Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler. Carbohydrate Polymers, 97, 90-97. https://dx.doi.org/10.1016/j.carbpol.2013.04.081

  • Le-Corre, D., Bras, J., & Dufresne, A. (2010). Starch nanoparticles: A review. Biomacromolecules, 11(5), 1139-1153.

  • Liu, C., Qin, Y., Li, X., Sun, Q., Xiong, L., & Liu, Z. (2016). Preparation and characterization of starch nanoparticles via self-assembly at moderate temperature. International Journal of Biological Macromolecules, 84, 354-360. https://dx.doi.org/10.1016/j.ijbiomac.2015.12.040

  • Sharma, M., Kadam, D. M., Chadha, S., Wilson, R. A., & Gupta, R. K. (2013). Influence of particle size on physical and sensory attributes of mango pulp powder. International Agrophysics, 27(3), 323-328. https://doi.org/10.2478/intag-2013-0001

  • Sujka, M. (2017). Ultrasonik modification of starch - Impact on granules porosity. Ultrasonic Sonochemistry, 37(2017), 424-429. https://doi.org/10.1016/j.ultsonch.2017.02.001

  • Zhu, H. P., Zhou, Z. Y., Yang, R. Y., & Yu, A. B. (2007). Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science, 62(13), 3378-3396. https://doi.org/10.1016/j.ces.2006.12.089

  • Zukryandry, Hidayat, B., & Muslihudin. (2022). Timing of extraction with ultrasonic bath system to improve the yield and chemical characteristic of cassava starch. IOP Conference Series: Earth and Environmental Science, 1012, Article 012016. https://doi.org/10.1088/1755-1315/1012/1/012016

  • Zuo, Y. Y. J., Hebraud, P., Hemar, Y., & Ashokkumar, M. (2012). Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrasonics Sonochemistry, 19, 421-426. https://doi.org/10.1016/j.ultsonch.2011.08.006