e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (3) Apr. 2024 / JST-4540-2023


SPICE Modeling and Performance Analysis of Enhancement-Mode GaN HEMTs for Augmented Hard-Switching Energy Conversion Efficiency

Xinzhi Liu, Suhaidi Shafie, Mohd Amran Mohd Radzi, Norhafiz Azis, Nurbahirah Norddin, Ismail Lawal, Normaziah Zulkifli and Abdul Hafiz Abdul Karim

Pertanika Journal of Science & Technology, Volume 32, Issue 3, April 2024


Keywords: DPT, E-GaN HEMT, parasitic inductance, power electronics, SPICE modeling, switching power losses

Published on: 24 April 2024

The advancement of renewable energy sources necessitates the development of effective power electronic devices. Enhancement-mode Gallium Nitride (E-GaN) high-electron-mobility transistors (HEMTs), an emerging wide-bandgap semiconductor device, demonstrate potential in photovoltaic (PV) energy converting applications to enhance power transfer efficiency. This paper discusses the enhanced semiconducting characteristics of GaN HEMT over conventional silicon power devices by analyzing spontaneous and piezoelectric polarizations of wurtzite GaN crystalline structure and the formation of two-dimensional electron gas (2DEG). The lateral device structure of E-GaN HEMT and normally switched-on depletion mode GaN HEMT are compared. A device-under-test (DUT) equivalent model incorporating parasitic components is proposed, adopting the EPC2204 Level 3 SPICE model. The model is simulated in a novel Double Pulse Test (DPT) topology with clamping and snubber subcircuits using LTSPICE software. The performance of GaN E-HEMT is compared to a MOSFET with similar parameters, and the impact of parasitic inductances and stray capacitances is evaluated through switching analysis. Findings support the potential of E-GaN HEMTs and indicate the DC-DC converter design considerations for portable solar PV system applications.

  • Ahmad, S., Kadir, M. Z. A. A., & Shafie, S. (2011). Current perspective of the renewable energy development in Malaysia. Renewable and Sustainable Energy Reviews, 15(2), 897–904.

  • Chen, K. J., Haberlen, O., Lidow, A., Tsai, C. lin, Ueda, T., Uemoto, Y., & Wu, Y. (2017). GaN-on-Si power technology: Devices and applications. IEEE Transactions on Electron Devices, 64(3), 779–795.

  • Chow, T. P. (2015, November 2-4). Wide bandgap semiconductor power devices for energy efficient systems. [Paper presentation]. IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, USA.

  • Delagebeaudeuf, D., & Linh, N. T. (1982). Metal-(n) AlGaAs-GaAs two-dimensional electron gas FET. IEEE Transactions on Electron Devices, 29(6), 955–960.

  • Greco, G., Iucolano, F., & Roccaforte, F. (2018). Review of technology for normally-off HEMTs with p-GaN gate. Materials Science in Semiconductor Processing, 78, 96–106.

  • Jiang, Z., Hua, M., Huang, X., Li, L., Wang, C., Chen, J., & Chen, K. J. (2022). Negative gate bias induced dynamic on-resistance degradation in schottky-type p -gan gate HEMTs. IEEE Transactions on Power Electronics, 37(5), 6018–6025.

  • Jones, E. A., Wang, F. F., & Costinett, D. (2016). Review of commercial GaN power devices and GaN-based converter design challenges. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(3), 707–719.

  • Kim, D. S., Joo, D. M., Lee, B. K., & Kim, J. S. (2015, June 1-5). Design and analysis of GaN FET-based resonant dc-dc converter. [Paper presentation]. 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea.

  • Lidow, A., Rooij, M., Strydom, J., Reusch, D., & Glaser, J. (2019). GaN Transistors for Efficient Power Conversion. Wiley.

  • Liu, Z., Huang, X., Lee, F. C., & Li, Q. (2014). Package parasitic inductance extraction and simulation model development for the high-voltage cascode GaN HEMT. IEEE Transactions on Power Electronics, 29(4), 1977–1985.

  • Nakajima, A., Takao, K., Shimizu, M., Okumura, H., Ohashi, H. (2008 September, 14-18). Equivalent circuit model for GaN-HEMTs in a switching simulation. [Paper presentation]. IEEE 30th International Telecommunications Energy Conference, San Diego, USA.

  • Nakajima, A., Sumida, Y., Dhyani, M. H., Kawai, H., & Narayanan, E. M. S. (2010). High density two-dimensional hole gas induced by negative polarization at GaN/AlGaN heterointerface. Applied Physics Express, 3(12), Article 121004.

  • Niu, Y. C., Huang, Y. T., Chen, C. L., & Chen, Y. M. (2018, October 30-November 2). Design considerations of the gate drive circuit for GaN HEMT Devices. [Paper presentation]. Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore.

  • Reusch, D., Strydom, J., & Lidow, A. (2015, March 15-19). A new family of GaN transistors for highly efficient high frequency DC-DC converters. [Paper presentation]. IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, USA.

  • Roccaforte, F., Fiorenza, P., Greco, G., Lo Nigro, R., Giannazzo, F., Iucolano, F., & Saggio, M. (2018). Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectronic Engineering, 187–188, 66–77.

  • Wang, F., Chen, W., Li, X., Sun, R., Xu, X., Xin, Y., Wang, Z., Shi, Y., Xia, Y., Liu, C., Zhou, J., Zhou, Q., & Zhang, B. (2020). Charge storage impact on input capacitance in p-GaN gate AlGaN/GaN power high-electron-mobility transistors. Journal of Physics D: Applied Physics, 53(30), Article 305106.

  • Wang, W., Liang, Y., Zhang, M., Lin, F., Wen, F., & Wang, H. (2021). Mechanism analysis of dynamic on-state resistance degradation for a commercial GaN HEMT using double pulse test. Electronics, 10(10), Article 1202.

  • Wonglakhon, T., & Zahn, D. (2020). Interaction potentials for modelling GaN precipitation and solid state polymorphism. Journal of Physics: Condensed Matter, 32(20), Article 205401.

  • Zhang, Y., Sun, M., Perozek, J., Liu, Z., Zubair, A., Piedra, D., Chowdhury, N., Gao, X., Shepard, K., & Palacios, T. (2018). Large area 1.2 kV GaN vertical power FinFETs with a record switching figure-of-merit. IEEE Electron Device Letters, 40(1), 75-78.