e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Alawadhi, E. M. (2008). Natural convection flow in a horizontal annulus with an oscillating inner cylinder using Lagrangian–Eulerian kinematics. Computers & Fluids, 37, 1253-1261.
Al-Azzawi, M. M., Abdullah, A. R., Majel, B. M., & Habeeb, L. J. (2021). Experimental investigation of the effect of forced vibration on natural convection heat transfer in a concentric vertical cylinder. Journal of Mechanical Engineering Research and Developments, 44(3), 56-65.
Ali, M., Rad, M. M., Nuhait, A., Almuzaiqer, R., Alimoradi, A., & Tlili, I. (2020). New equations for Nusselt number and friction factor of the annulus side of the conically coiled tubes in tube heat exchangers. Applied Thermal Engineering, 164, Article 114545. https://doi.org/10.1016/j.applthermaleng.2019.114545
Bouzerzour, A., Tayebi, T., Chamkha, A. J., & Djezzar, M. (2020). Numerical investigation of natural convection nanofluid flow in an annular space between confocal elliptic cylinders at various geometrical orientations. Computational Thermal Sciences: An International Journal, 12(2), 99-114. https://doi.org/10.1615/computthermalscien.2020026938
Fu, W. S., & Huang, C. P. (2006). Effects of a vibrational heat surface on natural convection in a vertical channel flow. International Journal of Heat and Mass Transfer, 49(7-8), 1340-1349. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.028
Ho, C. J., Lin, Y. H., & Chen, T. C., (1989). A numerical study of natural convection in concentric and eccentric horizontal cylindrical annuli with mixed boundary conditions. International Journal of Heat and Fluid Flow, 10(1), 40-47. https://doi.org/10.1016/0142-727X(89)90053-2
Hosseinian, A., Meghdadi I. A. H., & Shirani, E. (2018). Experimental investigation of surface vibration effects on increasing the stability and heat transfer coefficient of MWCNTs-water nanofluid in a flexible double pipe heat exchanger. Experimental Thermal and Fluid Science, 90, 275-285. https://doi.org/10.1016/j.expthermflusci.2017.09.018
Imtiaz, H., & Mahfouz, F. M. (2017). Conjugated conduction-free convection heat transfer in an annulus heated at either constant wall temperature or constant heat flux. Journal of Engineering and Technology, 36(2), 273-288. https://doi.org/10.22581/muet1982.1702.06
Kim, S. K., Kim, S. Y., & Choi, Y. D. (2002). Resonance of natural convection in a side heated enclosure with a mechanically oscillating bottom wall. International Journal of Heat and Mass Transfer, 45(15), 3155-3162. https://doi.org/10.1016/S0017-9310(02)00030-3
Kuehn, T. H., & Coldstein., R. J. (1976). An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. Journal of Fluid mechanics, 74(4), 695-719. https://doi.org/10.1017/S0022112076002012
Kuehn, T. H., & Goldstein, R. J. (1978). An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli. Journal of Heat and Mass Transfer, 100(4), 635-640. https://doi.org/10.1115/1.3450869
Liu, W., Yang, Z., Zhang, B., & Lv, P. (2017). Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow. International Journal of Heat and Mass Transfer, 115, 169-179. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.025
Mahfouz, F. M. (2012). Heat convection within an eccentric annulus heated at either constant wall temperature or constant heat flux. Journal of Heat Transfer, 134(8), Article 082502. https://doi.org/10.1115/1.4006170
Mahian, O., Pop, I., Sahin, A. Z., Oztop, H. F., & Wongwises, S. (2013). Irreversibility analysis of a vertical annulus using TiO2/water nanofluid with MHD flow effects. International Journal of Heat and Mass Transfer, 64, 671-679. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.001
Nasrat, K. M., Hameed, D. L., & Sadiq, E. A. (2019). The effect of transverse vibration on the natural convection heat transfer in a rectangular enclosure. International Journal of Mechanical Engineering and Technology, 10(6), 266-277.
Projahn, U., Rieger, H., & Beer, H. (1981). Numerical analysis of laminar natural convection between concentric and eccentric cylinders. Numerical Heat Transfer, 4(2), 131-146. https://doi.org/10.1080/01495728108961783
Sarhan, A. R., Karim, M. R., Kadhim, Z. K., & Naser, J. (2019). Experimental investigation on the effect of vertical vibration on thermal performances of rectangular flat plate. Experimental Thermal and Fluid Science, 101, 231-240. https://doi.org/10.1016/j.expthermflusci.2018.10.024
Shahsavar, A., Moradi, M., & Bahiraei, M. (2018). Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus. Journal of the Taiwan Institute of Chemical Engineers, 84, 28-40. https://doi.org/10.1016/j.jtice.2017.12.029
Shokouhmand, H., Abadi, S. M. A. N. R., & Jafari, A. (2011). The effect of the horizontal vibrations on natural heat transfer from an isothermal array of cylinders. International Journal of Mechanics and Materials in Design, 7(4), 313-326. https://doi.org/10.1007/s10999-011-9170-6
Tayebi, T., & Chamkha, A. J. (2021). Analysis of the effects of local thermal non-equilibrium (LTNE) on thermo-natural convection in an elliptical annular space separated by a nanofluid-saturated porous sleeve. International Communications in Heat and Mass Transfer, 129, Article 105725. https://doi.org/10.1016/j.icheatmasstransfer.2021.105725
Tayebi, T., Chamkha, A. J., Melaibari, A. A., & Raouache, E. (2021). Effect of internal heat generation or absorption on conjugate thermal-free convection of a suspension of hybrid nanofluid in a partitioned circular annulus. Communications in Heat and Mass Transfer, 126, Article 105397. https://doi.org/10.1016/j.icheatmasstransfer.2021.105397
Tayebi, T., Chamkha, A. J., Öztop, H. F., & Bouzeroura, L. (2022). Local thermal non-equilibrium (LTNE) effects on thermal-free convection in a nanofluid-saturated horizontal elliptical non-Darcian porous annulus. Mathematics and Computers in Simulation, 194, 124-140. https://doi.org/10.1016/j.matcom.2021.11.011
Tayebi, T., Djezzar, M., Bouzerzour, A., Azzouz, K., & Khan, Z. H. (2016). Numerical Simulation of Natural Convection of Water Based Nanofluids in Horizontal Eccentric Cylindrical Annuli. Journal of Nanofluids, 5(2), 253-263. https://doi.org/10.1166/jon.2016.1211
Tayebi, T., Öztop, H. F., & Chamkha, A. J. (2021). MHD natural convection of a CNT-based nanofluid-filled annular circular enclosure with inner heat-generating solid cylinder. The European Physical Journal Plus, 136(2), Article 150. https://doi.org/10.1140/epjp/s13360-021-01106-7
Thompson, J., F., Thames, F. C., & Mastin, C. W. (1974). Automatic numerical generation of body-fitted curvilinear coordinate system for fields containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics, 15(3), 299-319.
Wang, B. F., Zhou, Q., & Sun, C. (2020). Vibration-Induced Boundary-Layer Destabilization Achieves Massive Heat-Transport Enhancement. Science Advances, 6(21). https://doi.org/10.1126/sciadv.aaz8239
ISSN 1511-3701
e-ISSN 2231-8542