Home / Regular Issue / JTAS Vol. 44 (2) May. 2021 / JTAS-2171-2020

 

Using Nematode Community to Evaluate Banana Soil Food Web in Mekargalih, Cianjur, West Java

Dale Akbar Yogaswara, Hikmat Kasmara, Wawan Hermawan and

Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 2, May 2021

DOI: https://doi.org/10.47836/pjtas.44.2.12

Keywords: Agriculture, banana, food web, nematode

Published on: 28 May 2021

Soil biota is very diverse and contributes widely to ecosystem services that are important in the sustainable function of natural and managed ecosystems. Knowing the condition of the soil food web through the communities that inhabit it is necessary to assess the productivity of the soil. Nematode communities in the soil food web can be used as indicators because of their high abundance, and they inhabit various trophic levels, and participate in several important processes in the soil. The soil food web condition from three locations (Agr1, Agr2, Agr3) through the nematode functional index was evaluated using the maturity index (MI), the maturity index 2-5 (MI-25), the plant-parasitic index (PPI), the channel index (CI), the enrichment index (EI), the structure index (SI), and the basal index (BI). Nematode diversity was evaluated using Simpson’s index of diversity, dominance, and evenness. The MI and MI2-5 scores indicated that Agr3 (3.81) had an undisturbed food web, while Agr2 (2.88 and 3.0) and Agr1 (2.5 and 2.51) were in a moderate condition with minor disturbances. Fauna profile analysis using SI and EI shows that Agr3 and Agr1 had an undisturbed soil food web, and Agr2 was in enriched conditions. CI results found that Agr1 and Agr3 had a fungal decomposition pathway while Agr2 had a bacterial decomposition pathway. We concluded from this research, that prospect of the nematode community to serve as a collection of biological indicator data in assessing soil or ecosystem health can be considered in further research.

  • Ahmad, R. Z., & Tiffarent, R. (2020). Pathological aspects of haemonchosis in goats and sheeps. Wartazoa, 30(2), 91-102. https://doi.org/10.14334/wartazoa.v30i2.2185

  • Andrássy, I. (1983). A taxonomic review of the suborder Rhabditina (Nematoda: Secernentia). ORSTOM.

  • Baihaqi, Z. A., Widiyono, I., & Nurcahyo, W. (2019). Prevalence of gastrointestinal worms in Wonosobo and thin-tailed sheep on the slope of Mount Sumbing, Central Java, Indonesia. Veterinary World, 12(11), 1866-1871. https://doi.org/10.14202/vetworld.2019.1866-1871

  • Barros, P. A., Pedrosa, E. M. R., d Oliveira Cardoso, M. S., & Rolim, M. M. (2017). Relationship between soil organic matter and nematodes in sugarcane fields. Semina: Ciências Agrárias, 38(2), 551-559. https://doi.org/10.5433/1679-0359.2017v38n2p551

  • Berkelmans, R., Ferris, H., Tenuta, M., & Van Bruggen., A. H. C. (2003). Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Applied Soil Ecology, 23(3), 223–235. https://doi.org/10.1016/s0929-1393(03)00047-7

  • Bongers, T. (1990). The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83(1), 14-19. https://doi.org/10.1007/BF00324627

  • Bongers, T., & Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10(3), 239–251. https://doi.org/10.1016/s0929-1393(98)00123-1

  • Bongers, T., & Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Tree, 14(6), 224-228. https://doi.org/10.1016/S0169-5347(98)01583-3

  • Bongers, T., & Korthals, G. (1995). The behavior of MI and PPI under enriched conditions. Nematologica, 41, 286.

  • Bongers, T., Alkemade, R., & Yeates, G. W. (1991). Interpretation of disturbance-inducedmaturity decrease in marine nematode assemblages by means of the maturity index. Marine Ecology Progress Series, 76, 135-142.

  • Briar, S. S., Barker, C., Tenuta, M., & Entz, M. H. (2012). Soil nematode responses to crop management and conversion to native grasses. Journal of Nematology, 44(3), 245-254.

  • Brussaard, L., Kuyper, T. W., Didden, W. A. M., De Goede, R. G. M., & Bloem, J. (2004). Biological soil quality from biomass to biodiversity – Importance and resilience to management stress and disturbance. In P. Schjønning, S. Elmholt, & B. T. Christensen (Eds.), Managing soil quality: Challenges in modern agriculture (pp. 139-161). CABI Publishing.

  • Budiman, A., Supramana, & Giyanto. (2020). Phytonematodes associated with arabica coffee in Bondowoso, East Java. IOP Conference Series: Earth and Environmental Science, 418, 012018. https://doi.org/10.1088/1755-1315/418/1/012018

  • Celleti, M., & Potter, J. (2016). Sampling soil and roots for plant parasitic nematodes. http://www.omafra.gov.on.ca/english/crops/facts/06-099.htm#:~:text=Collect%20soil%20cores%20in%20a,or%20analyzed%20for%20nematode%20populations

  • Cesarz, S., Ruess, L., Jacob, M., Jacob, A., Schaefer, M., & Scheu, S. (2013). Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biology and Biochemistry, 62, 36–45. https://doi.org/10.1016/j.soilbio.2013.02.020

  • Compton, J. E., & Boone, R. D. (2000). Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology, 81(8), 2314–2330. https://doi.org/10.1890/0012-9658(2000)081[2314:ltioao]2.0.co;2

  • Coyne, D. L., Nicol, J. M., & Claudius-Cole, B. (2014). Practical plant nematology: A field and laboratory guide (2nd ed.). International Institute of Tropical Agriculture.

  • Daly, A., Baetens, J., & De Baets, B. (2018). Ecological diversity: Measuring the unmeasurable. Mathematics, 6(7), 119-147. https://doi.org/10.3390/math6070119

  • De Vries, F. T., Thebault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjornlund, L., Jørgensen, H. B., Brady, M. V., Christensen, S., de Ruiter, P. C., d’Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Gera Hol, W. H., Hotes, S., Mortimer, S. R., Setälä, H., Sgardelis, S. P. … Bardgett, R. D. (2013). Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, 110(35), 14296–14301. https://doi.org/10.1073/pnas.1305198110

  • Djiwanti, R. S. (2019). Taxa status of some reported plant-parasitic nematodes in Indonesia. IOP Conference Series: Earth and Environmental Science, 250, 012100. https://doi.org/10.1088/1755-1315/250/1/012100

  • Ettema, C. H., & Bongers, T. (1993). Characterization of nematode colonization and succession in disturbed soil using the maturity index. Biology and Fertility of Soils, 16(2), 79–85. https://doi.org/10.1007/bf00369407

  • Ferris, H., & Bongers, T. (2006). Nematode indicators of organic enrichment. Journal of Nematology, 38(1), 1-12.

  • Ferris, H., Bongers, T., & De Goede, R. G. M. (2001). A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18(1), 13–29. https://doi.org/10.1016/S0929-1393(01)00152-4

  • Ferris, V. R., & Ferris, J. M. (1974). Inter-relationships between nematode and plant communities in agricultural ecosystems. Agro-Ecosystems, 1, 275–299. https://doi.org/10.1016/0304-3746(74)90039-0

  • Foissner, W. (1997). Protozoa as bioindicators in agroecosystems, with emphasis on farming practices, biocides, and biodiversity. Agriculture, Ecosystems and Environment, 62(2-3), 93–103. https://doi.org/10.1016/s0167-8809(96)01142-5

  • Freckman, D. W., & Caswell, E. P. (1985). The ecology of nematodes in agroecosystems. Annual Review of Phytopathology, 23, 275-296. https://doi.org/10.1146/annurev.py.23.090185.001423

  • Frouz, J., Thébault, E., Pižl, V., Adl, S., Cajthaml, T., Baldrián, P., Háněl, L., Starý, J., Tajovský, K., Materna, J., Nováková, A., & de Ruiter, P. C. (2013). Soil food web changes during spontaneous succession at post mining sites: A possible ecosystem engineering effect on food web organization?. PLOS One, 8(11), e379694. https://doi.org/10.1371/journal.pone.0079694

  • Guajardo, S. A. (2015). Measuring diversity in police agencies. Journal of Ethnicity in Criminal Justice, 13(1), 1–15. https://doi.org/10.1080/15377938.2014.893220

  • Handayani, N. D., Esquibet, M., Montarry, J., Lestari, P., Couvreur, M., Dikin, A., Helder, J., Grenier, E., & Bert, W. (2020). Distribution, DNA barcoding and genetic diversity of potato cyst nematodes in Indonesia. European Journal of Plant Pathology, 158(2), 363-380. https://doi.org/10.1007/s10658-020-02078-7

  • Hooper, D. J., Hallmann, J., & Subbotin, S. A. (2005). Methods for extraction, processing, and detection of plant and soil nematodes. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant-parasitic nematodes in subtropical and tropical agriculture (pp. 53-86). CABI Publishing.

  • Jairajpuri, M. S., & Ahmad, W. (1992). Dorylaimida: Free-living, predaceous and plant-parasitic nematodes. Brill Publisher.

  • Jost, L. (2010). The relation between evenness and diversity. Diversity, 2(2), 207–232. https://doi.org/10.3390/d2020207

  • Khoirani, K., Lukman, H. Y., Nikmaturrayan, & Hosin. (2020). Identification of worm types that infest Bali cattle in Bolo district. Jurnal Riset Veteriner Indonesia, 4(2), 62-68. https://doi.org/10.20956/jrvi.v4i2.9704

  • Kibblewhite, M., Ritz, K., & Swift, M. (2008). Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 685–701. https://doi.org/10.1098/rstb.2007.2178

  • Kim, E., Seo, Y., Kim, Y. S., Park, Y., & Kim, Y. H. (2017). Effects of soil textures on infectivity of root-knot nematodes on carrot. The Plant Pathology Journal, 33(1), 66-74. https://doi.org/10.5423/PPJ.OA.07.2016.0155

  • Korthals, G. W., De Goede, R. G. M., Kammenga, J. E., & Bongers, T. (1996). The maturity index as an instrument for risk assessment of soil pollution. In N. M. van Straalen, & D. A. Krivolutsky (Eds.), Bioindicator systems for soil pollution (pp. 85-93). Academic Publishers.

  • Krashevska, V., Kudrin, A. A., Widyastuti, R., & Scheu, S. (2019). Changes in nematode communities and functional diversity with the conversion of rainforest into rubber and oil palm plantations. Frontiers in Ecology and Evolution, 7(487), 1-10. .https://doi.org/10.3389/fevo.2019.00487

  • Kurniawati, F., Nursipa, N. T., & Munif, A. (2020). Root-knot nematodes in celery (Apium graveolens L.) and its in vitro control using endophytic bacteria. Jurnal Agroekoteknologi, 13(1), 70-81. https://doi.org/10.21107/agrovigor.v13i1.6304

  • Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6(1), 6707. https://doi.org/10.1038/ncomms7707

  • Lenz, R., & Eisenbeis, G. (2000). Short-term effects of different tillage in a sustainable farming system on nematode community structure. Biology and Fertility of Soils, 31(3-4), 237–244. https://doi.org/10.1007/s003740050651

  • Lisnawita, Supramana, & Suastika, G. (2012). Identification of potato cyst nematode in Indonesia by polymerase chain reaction. Australasian Plant Disease Notes, 7(1), 133–135. https://doi.org/10.1007/s13314-012-0067-5

  • Liu, T., Chen, X., Hu, F., Ran, W., Shen, Q., Li, H., & Whalen, J. K. (2016). Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities. Agriculture, Ecosystems and Environment, 232, 199–207. https://doi.org/10.1016/j.agee.2016.07.015

  • Liu, X., Zhang, D., Li, H., Qi, X., Gao, Y., Zhang, Y., Han, Y., Jiang, Y., & Li, H. (2020). Soil nematode community and crop productivity in response to 5-year biochar and manure addition to yellow cinnamon soil. BMC Ecology, 20(1), 39. https://doi.org/10.1186/s12898-020-00304-8

  • Masse, D., Pate, E., Ndiaye-Faye, N., & Cadet, P. (2002). Effect of fallow improvement on the nematode community in the Sudanian region of Senegal. European Journal of Soil Biology, 38(2), 205–211. https://doi.org/10.1016/s1164-5563(02)01149-4

  • McSorley, R. (2003). Adaptations of nematodes to environmental extremes. Florida Entomologist, 86(2), 138–142. https://doi.org/10.1653/0015-4040(2003)086[0138:aontee]2.0.co;2

  • Mirsam, H., Muis, A., & Nonci, N. (2020). The density and diversity of plant-parasitic nematodes associated with maize rhizosphere in Malakaji Highland, South Sulawesi, Indonesia. Biodiversitas, 21(6), 2654-2661. https://doi.org/10.13057/biodiv/d210637

  • Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M., & Albertelli, G. (2011). The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators, 11(2), 328–336. https://doi.org/10.1016/j.ecolind.2010.05.011

  • Mutala’liah, Indarti, S., & Putra, N. S. (2018). Short communication: Abundance and diversity of plant-parasitic nematodes associated with BP 308 and BP 42 clones of robusta coffee in Java, Indonesia. Biodiversitas, 19(1), 67-70. https://doi.org/10.13057/biodiv/d190111

  • Neher, D. A. (1999). Soil community composition and ecosystem processes: Comparing agricultural ecosystems with natural ecosystems. Agroforestry Systems, 45(1), 159–185. https://doi.org/10.1023/a:1006299100678

  • Neher, D. A., & Campbell, C. L. (1994). Nematode communities and microbial biomass in soils with annual and perennial crops. Applied Soil Ecology, 1(1), 17–28. https://doi.org/10.1016/0929-1393(94)90020-5

  • Neher, D. A., Peck, S. L., Rawlings, J. O., & Campbell, C. L. (1995). Measures of nematode community structure and sources of variability among and within agricultural fields. Plant and Soil, 170(1), 167–181. https://doi.org/10.1007/bf02183065

  • Nguyen, K. B. (2006). Suborder Rhabditina. http://entnemdept.ufl.edu/nguyen/morph/rhabdi/rhabkey.HTM

  • Nguyen, K. B. (2009). Illustrated key for the identification of nematodes in the suborder of Cephalobina. http://entnemdept.ufl.edu/nguyen/morph/cephalob/cephakey.htm

  • Nielsen, U. N., Ayres, E., Wall, D. H., Li, G., Bardgett, R. D., Wu, T., & Garey, J. R. (2014). Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 23(9), 968–978. https://doi.org/10.1111/geb.12177

  • Odum, E. P. (1985). Trends expected in stressed ecosystems. BioScience, 35(7), 419–422. https://doi.org/10.2307/1310021

  • Okada, H., & Harada, H. (2007). Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Applied Soil Ecology, 35(3), 582–598. https://doi.org/10.1016/j.apsoil.2006.09.008

  • Ortiz, V., Phelan, S., & Mullins, E. (2016). A temporal assessment of nematode community structure and diversity in the rhizosphere of cisgenic Phytophthora infestans-resistant potatoes. BMC Ecology, 16(1), 55. https://doi.org/10.1186/s12898-016-0109-5

  • Peña-Santiago, R. (2006). Dorylaimida part I: Superfamilies Belondoridea, Nygolaimoidea and Tylencholaimoidea. In Eyualem-Abebe, I. Andrassy, & W. Traunspurger (Eds.), Freshwater nematodes ecology and taxonomy (pp. 326-391). CABI Publishing.

  • Peña-Santiago, R. (2014a). Order Dorylaimida Pearse, 1942. In A. Schmidt-Rhaesa (Ed.), Handbook of zoologi Gastrotricha, Cycloneuralia and Gnathifera: Nematoda (pp. 277-298). Walter de Gruyter.

  • Peña-Santiago, R. (2014b). Order Mononchida Jairajpuri, 1969. In A. Schmidt-Rhaesa (Ed.), Handbook of zoologi Gastrotricha, Cycloneuralia and Gnathifera: Nematoda (pp. 299-312). Walter de Gruyter.

  • Pielou, E. C. (1969). An introduction to mathematical ecology. Wiley.

  • Ponge, J.-F., Pérès, G., Guernion, M., Ruiz-Camacho, N., Cortet, J., Pernin, C., Villenave, C., Chaussod, R., Martin-Laurent, F., Bispo, A., & Cluzeau, D. (2013). The impact of agricultural practices on soil biota: A regional study. Soil Biology and Biochemistry, 67, 271–284. https://doi.org/10.1016/j.soilbio.2013.08.026

  • Quénéhervé, P., Barrière, V., Salmon, F., Houdin, F., Achard, R., Gertrude, J.-C., Marie-Luce, S., Chabrier, C., Duyck, P-F., & Tixier, P. (2011). Effect of banana crop mixtures on the plant-feeding nematode community. Applied Soil Ecology, 49, 40–45. https://doi.org/10.1016/j.apsoil.2011.07.003

  • Renčo, M., Gömöryová, E., & Čerevková, A. (2020). The effect of soil type and ecosystems on the soil nematode and microbial communities. Helminthologia, 57(2), 129-144. https://doi.org/10.2478/helm-2020-0014

  • Sakaguchi, S., Yunus, M., Sugi, S., & Sato, H. (2019). Integrated taxonomic approaches to seven species of capillariid nematodes (Nematoda: Trichocephalida: Trichinelloidea) in poultry from Japan and Indonesia, with special reference to their 18S rDNA phylogenetic relationships. Parasitology Research, 119, 957-972. https://doi.org/10.1007/s00436-019-06544-y

  • Scholze, V. S., & Sudhaus, W. (2011). A pictorial key to current genus groups of ‘Rhabditidae’. Journal of Nematode Morphology and Systematics, 14(2), 105-112.

  • Sholeha, A. R., Maharning, A. R., & Nasution, E. K. (2017). Nematode community response to varied proportion of decomposing plant litter. Scripta Biologica, 4(3), 161-164. https://doi.org/10.20884/1.SB.2017.4.3.588

  • Siddiqi, M. R. (Ed.) (2000). Tylenchida: Parasites of plants and insects. CABI Publishing. http://doi.org/10.1079/9780851992020.0000

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688. https://doi.org/10.1038/163688a0

  • Statistics Indonesia. (2019). Statistik tanaman buah-buahan dan sayuran tahunan Indonesia 2018 [Indonesia annual fruit and vegetable crop statistics for 2018]. https://www.bps.go.id/publication/2019/10/07/1846605363955649c9f6dd6d/statistik-tanaman-buah-buahan-dan-sayuran-tahunan-indonesia-2018.html

  • Subbotin, S. A. (2014). Order Tylenchida Thorne, 1949. In A. Schmidt-Rhaesa (Ed.), Handbook of zoologi Gastrotricha, Cycloneuralia and Gnathifera: Nematoda (pp. 613-636). Walter de Gruyter.

  • Treonis, A. M., Sutton, K. A., Unangst, S. K., Wren, J. E., Dragan, E. S., & McQueen, J. P. (2019). Soil organic matter determines the distribution and abundance of nematodes on alluvial fans in Death Valley, California. Ecosphere, 10(4), e02659. https://doi.org/10.1002/ecs2.2659

  • Van Bezooijen, J. (2006). Methods and techniques for nematology. Wageningen University.

  • Varga, I., Benković-Lačić, T., Lončarić, Z., Popović B, & Brmež, M. (2019). Liming, phosphorus and zinc influence on soil nematode community structure at hot pepper. Horticultural Science, 46(2), 65–71. https://doi.org/10.17221/217/2017-hortsci

  • Vinciguerra, M. T. (2006). Dorylaimida part II: Superfamily Dorylaimoidea. In Eyualem-Abebe, I. Andrassy, & W. Traunspurger (Eds.), Freshwater nematodes ecology and taxonomy (pp. 392-467). CABI Publishing.

  • Wang, K, H., McSorley, R., & Gallaher, R. N. (2004). Relationship of soil management history and nutrient status to nematode community structure. Nematropica, 34(1), 83-95.

  • Wardle, D. A., Yeates, G. W., Watson, R. N., & Nicholson, K. S. (1995). Development of the decomposer food-web, trophic relationships, and ecosystem properties during a three-year primary succession in Sawdust. Oikos, 73(2), 155. https://doi.org/10.2307/3545904

  • Wasilewska, L. (1989). Impact of human activities on nematode communities in terrestrial ecosystems. In M. Clarholm & L. Bergström (Eds.), Ecology of Arable land – Perspectives and challenges. Developments in plant and soil sciences (Vol. 39, pp. 123–132). Springer. https://doi.org/10.1007/978-94-009-1021-8_12

  • Yardim, E. N., & Edwards, C. A. (1998). The effects of chemical pest, disease and weed management practices on the trophic structure of nematode populations in tomato agroecosystems. Applied Soil Ecology, 7(2), 137–147. https://doi.org/10.1016/s0929-1393(97)00036-x

  • Yeates, G. W., Bongers, T., De Goede, R. G. M., Freckman, D. W., & Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera - An outline for soil ecologists. Journal of Nematology, 25(3), 315-331.

  • Zhong, S., Zeng, H., & Jin, Z. (2015). Responses of soil nematode abundance and diversity to long-term crop rotations in Tropical China. Pedosphere, 25(6), 844–852. https://doi.org/10.1016/s1002-0160(15)30065-5

  • Zulini, A., & Peneva, V. (2006). Order Mononchida. In Eyualem-Abebe, I. Andrassy, & W. Traunspurger (Eds.), Freshwater nematodes ecology and taxonomy (pp. 468-496). CABI Publishing.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2171-2020

Download Full Article PDF

Share this article

Recent Articles