Home / Regular Issue / JTAS Vol. 44 (4) Nov. 2021 / JTAS-2257-2021

 

Chemical Profiles of Terminalia catappa LINN Nut and Terminalia subspathulata KING Fruit

Yahaya Yakubu, Soo Yee Lee and Khozirah Shaari

Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 4, November 2021

DOI: https://doi.org/10.47836/pjtas.44.4.06

Keywords: Curcuminoids, fatty acids, flavonoids, GCMS, hydrolysable tannins, Terminalia catappa , Terminalia subspathulata , UHPLC-ESI-MS/MS

Published on: 2 November 2021

Terminalia catappa and Terminalia subspathulata are two species of the Combretaceae family of medium to large forest trees. The fruits of T. catappa are known for the edible nuts commonly known as tropical almonds due to their similarity in taste with almonds of commerce. Therefore, the chemical profiles of the fruits of the two Terminalia species were examined to ascertain their potential value for food or health uses. Gas chromatography-mass spectrometry (GCMS) and ultrahigh-pressure liquid chromatography-electrospray ionisation tandem mass spectrometry (UHPLC-ESI-MS/MS) techniques were employed to profile the extracts to ensure good coverage of the classes of metabolites of the fruit extracts. The GCMS results revealed that T. catappa nuts were rich in palmitic acid (33.2%), linoleoyl chloride (29.1%), and oxacyclohexadecan-2-one commonly known as pentadecanolide (16.2%). In comparison, the major constituents of T. subspathulata fruits were palmitic acid (18.1%) and its methyl ester, methyl palmitate (9.3%). Furthermore, a total of 38 compounds were putatively identified in the 70% aqueous methanolic extracts of both species via UHPLC-ESI-MS/MS analysis, comprising three organic acids, sixteen hydrolysable tannins, ten phenolic acids, eight flavonoids, and a diarylheptanoid. The GCMS- and liquid chromatography-mass spectrometry- (LCMS-) LCMS-based metabolite profiles obtained in the present study have revealed the diversity of chemical constituents in the T. catappa nuts and T. subspathulata fruits, potentially valorised as functional foods nutraceutical ingredients for plant-based health products.

  • Abdel-Salam, O. M., Youness, E. R., Mohammed, N. A., Morsy, S. M. Y., Omara, E. A., & Sleem, A. A. (2014). Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice. Journal of Medicinal Food, 17(5), 588-598. https://doi.org/10.1089/jmf.2013.0065

  • Adisakwattana, S. (2017). Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients, 9(2), 163. https://doi.org/10.3390/nu9020163

  • Al Kadhi, O., Melchini, A., Mithen, R., & Saha, S. (2017). Development of a LC-MS/MS method for the simultaneous detection of tricarboxylic acid cycle intermediates in a range of biological matrices. Journal of Analytical Methods in Chemistry, 2017, 5391832. https://doi.org/10.1155/2017/5391832

  • Alam, A., Subhan, N., Hossain, H., Hossain, M., & Reza, H. M. (2016). Hydroxycinnamic acid derivatives : A potential class of natural compounds for the management of lipid metabolism and obesity. Nutrition and Metabolism, 13(1), 1–13. https://doi.org/10.1186/s12986-016-0080-3

  • Anand, A. V., Divya, N., & Kotti, P. P. (2015). An updated review of Terminalia catappa. Pharmacognosy Reviews, 9(18), 93-98. https://doi.org/10.4103/0973-7847.162103

  • Avula, B., Wang, Y. H., Isaac, G., Yuk, J., Wrona, M., Yu, K., & Khan, I. A. (2017). Metabolic profiling of hoodia, chamomile, Terminalia species and evaluation of commercial preparations using ultrahigh-performance liquid chromatography quadrupole-time-of-flight mass spectrometry. Planta Medica, 83(16), 1297-1308. https://doi.org/10.1055/s-0043-109239

  • Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M. L., Fryer, A. D., Greim, H., Miyachi, Y., Saurat, J. H., & Sipes, I. G. (2011). A toxicological and dermatological assessment of macrocyclic lactone and lactide derivatives when used as fragrance ingredients. Food and Chemical Toxicology, 49(Supplement 2), S219–S241. https://doi.org/10.1016/j.fct.2011.07.052

  • Bhuiyan, M., Begum, J., & Anwar, M. (2008). Essential oils of leaves and rhizomes of Kaempferia galanga Linn. Chittagong University Journal of Biological Sciences, 3(1 & 2), 65–76. https://doi.org/10.3329/cujbs.v3i1.13407

  • Bouazzi, S., El Mokni, R., Nakbi, H., Dhaouadi, H., Joshi, R. K., & Hammami, S. (2020). Chemical composition and antioxidant activity of essential oils and hexane extract of Onopordum arenarium from Tunisia. Journal of Chromatographic Science, 58(4), 287-293. https://doi.org/10.1093/chromsci/bmz113

  • Bresciani, L., Favari, C., Calani, L., Francinelli, V., Riva, A., Petrangolini, G., Allegrini, P., Mena, P., & Del Rio, D. (2020). The effect of formulation of curcuminoids on their metabolism by human colonic microbiota. Molecules, 25(4), 940. https://doi.org/10.3390/molecules25040940

  • Buiarelli, F., Coccioli, F., Merolle, M., Jasionowska, R., & Terracciano, A. (2010). Identification of hydroxycinnamic acid–tartaric acid esters in wine by HPLC–tandem mass spectrometry. Food Chemistry, 123(3), 827-833. https://doi.org/10.1016/j.foodchem.2010.05.017

  • Bulló, M., Lamuela- Raventós, R., & Salas-Salvadó, J. (2011). Mediterranean diet and oxidation: Nuts and olive oil as important sources of fat and antioxidants. Current Topics in Medicinal Chemistry, 11(14), 1797-1810. https://doi.org/10.2174/156802611796235062

  • Buzgaia, N., Awin, T., Elabbar, F., Abdusalam, K., Lee, S. Y., Rukayadi, Y., Abas, F., & Shaari, K. (2020). Antibacterial activity of Arbutus pavarii Pamp against methicillin-resistant Staphylococcus aureus (MRSA) and UHPLC-MS/MS profile of the bioactive fraction. Plants, 9(11), 1539. https://doi.org/10.3390/plants9111539

  • Chen, G., Li, X., Saleri, F., & Guo, M. (2016). Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules, 21(10), 1275. https://doi.org/10.3390/molecules21101275

  • Cheynier, V. (2012). Phenolic compounds: From plants to foods. Phytochemistry Reviews, 11(2), 153-177. https://doi.org/10.1007/s11101-012-9242-8

  • Christenhusz, M. J., & Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201-217. https://doi.org/10.11646/phytotaxa.261.3.1

  • Cock, I. E. (2015). The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacology, 23(5), 203-229. https://doi.org/10.1007/s10787-015-0246-z

  • Das, G., Kim, D. Y., Fan, C., Gutiérrez-Grijalva, E. P., Heredia, J. B., Nissapatorn, V., Mitsuwan, W., Pereira, M. L., Nawaz, M., Siyadatpanah, A., Norouzi, R., Sawicka, B., Shin, H. S., & Patra, J. K. (2020). Plants of the genus Terminalia: An insight on its biological potentials, pre-clinical and clinical studies. Frontiers in Pharmacology, 11, 561248. https://doi.org/10.3389/fphar.2020.561248

  • Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629-1642. https://doi.org/10.1007/s00253-009-2355-3

  • Deseo, M. A., Elkins, A., Rochfort, S., & Kitchen, B. (2020). Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chemistry, 314, 126180. https://doi.org/10.1016/j.foodchem.2020.126180

  • Famiani, F., Battistelli, A., Moscatello, S., Cruz-Castillo, J. G., & Walker, R. P. (2015). The organic acids that are accumulated in the flesh of fruits: Occurrence, metabolism and factors affecting their contents-a review. Revista Chapingo Serie Horticultura, 21(2), 97-128. https://doi.org/10.5154/r.rchsh.2015.01.004

  • Fathoni, A., Saepudin, E., Cahyana, A. H., Rahayu, D. U. C., & Haib, J. (2017). Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado. In AIP Conference Proceedings (Vol. 1862, No. 1, p. 030079). AIP Publishing LLC. https://doi.org/10.1063/1.4991183

  • Flores, P., Hellín, P., & Fenoll, J. (2012). Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chemistry, 132(2), 1049-1054. https://doi.org/10.1016/j.foodchem.2011.10.064

  • Fracassetti, D., Costa, C., Moulay, L., & Tomás-Barberán, F. A. (2013). Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chemistry, 139(1-4), 578-588. https://doi.org/10.1016/j.foodchem.2013.01.121

  • Ganeshpurkar, A., & Saluja, A. K. (2017). The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(2), 149-164. https://doi.org/10.1016/j.jsps.2016.04.025

  • Ghirardello, D., Prosperini, S., Zeppa, G., & Gerbi, V., (2010). Phenolic acid profile and antioxidant capacity of hazelnut (Corylus avellana L.) kernels in different solvent systems. Journal of Food and Nutrition Research, 49(4), 195-205.

  • Gowda, S. G. B., Fuda, H., Tsukui, T., Chiba, H., & Hui, S. P. (2020). Discovery of eicosapentaenoic acid esters of hydroxy fatty acids as potent Nrf2 activators. Antioxidants, 9(5), 397. https://doi.org/10.3390/antiox9050397

  • Gris, E. F., Mattivi, F., Ferreira, E. A., Vrhovsek, U., Pedrosa, R. C., & Bordignon-Luiz, M. T. (2013). Phenolic profile and effect of regular consumption of Brazilian red wines on in vivo antioxidant activity. Journal of Food Composition and Analysis, 31(1), 31-40. https://doi.org/10.1016/j.jfca.2013.03.002

  • Howes, M. J. R. (2018). Phytochemicals as anti-inflammatory nutraceuticals and phytopharmaceuticals. In Immunity and inflammation in health and disease (pp. 363-388). Academic Press. https://doi.org/10.1016/B978-0-12-805417-8.00028-7

  • Jiang, H., Somogyi, Á., Jacobsen, N. E., Timmermann, B. N., & Gang, D. R. (2006). Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 20(6), 1001-1012. https://doi.org/10.1002/rcm.2401

  • Kalita, S., Khandelwal, S., Madan, J., Pandya, H., Sesikeran, B., & Krishnaswamy, K. (2018). Almonds and cardiovascular health: A review. Nutrients, 10(4), 468. https://doi.org/10.3390/nu10040468

  • Karimi, E., Jaafar, H. Z., Ghasemzadeh, A., & Ebrahimi, M. (2015). Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biological Research, 48(1), 9. https://doi.org/10.1186/0717-6287-48-9

  • Kinoshita, S., Inoue, Y., Nakama, S., Ichiba, T., & Aniya, Y. (2007). Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine, 14(11), 755-762. https://doi.org/10.1016/j.phymed.2006.12.012

  • Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370

  • Kumar, S., Chandra, P., Bajpai, V., Singh, A., Srivastava, M., Mishra, D. K., & Kumar, B. (2015). Rapid qualitative and quantitative analysis of bioactive compounds from Phyllanthus amarus using LC/MS/MS techniques. Industrial Crops and Products, 69, 143-152. https://doi.org/10.1016/j.indcrop.2015.02.012

  • Kumar, S., Singh, A., & Kumar, B. (2017). Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. Journal of Pharmaceutical Analysis, 7(4), 214-222. https://doi.org/10.1016/j.jpha.2017.01.005

  • Larrosa, M., García-Conesa, M. T., Espín, J. C., & Tomás-Barberán, F. A. (2010). Ellagitannins, ellagic acid and vascular health. Molecular Aspects of Medicine, 31(6), 513-539. https://doi.org/10.1016/j.mam.2010.09.005

  • Li, X., Deng, Y., Zheng, Z., Huang, W., Chen, L., Tong, Q., & Ming, Y. (2018). Corilagin, a promising medicinal herbal agent. Biomedicine and Pharmacotherapy, 99, 43-50. https://doi.org/10.1016/j.biopha.2018.01.030

  • Liebelt, D. J., Jordan, J. T., & Doherty, C. J. (2019). Only a matter of time: The impact of daily and seasonal rhythms on phytochemicals. Phytochemistry Reviews, 18(6), 1409-1433. https://doi.org/10.1007/s11101-019-09617-z

  • Liu, Q., Tang, G. Y., Zhao, C. N., Gan, R. Y., & Li, H. B. (2019). Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants, 8(4), 78. https://doi.org/10.3390/antiox8040078

  • Maity, S., Chatterjee, S., Variyar, P. S., Sharma, A., Adhikari, S., & Mazumder, S. (2013). Evaluation of antioxidant activity and characterization of phenolic constituents of Phyllanthus amarus root. Journal of Agricultural and Food Chemistry, 61(14), 3443-3450. https://doi.org/10.1021/jf3046686

  • Mena, P., Calani, L., Dall’Asta, C., Galaverna, G., García-Viguera, C., Bruni, R., Crozier, A., & Del Rio, D. (2012). Rapid and comprehensive evaluation of (poly) phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules, 17(12), 14821-14840. https://doi.org/10.3390/molecules171214821

  • Mininel, F. J., Leonardo Junior, C. S., Espanha, L. G., Resende, F. A., Varanda, E. A., Leite, C. Q. F., Vilegas, W., & Dos Santos, L. C. (2014). Characterization and quantification of compounds in the hydroalcoholic extract of the leaves from Terminalia catappa Linn. (Combretaceae) and their mutagenic activity. Evidence-Based Complementary and Alternative Medicine, 2014, 676902. https://doi.org/10.1155/2014/676902

  • Mozetič, B., Tomažič, I., Škvarč, A., & Trebše, P. (2006). Determination of polyphenols in white grape berries cv. Rebula. Acta Chimica Slovenica, 53, 58-64.

  • Mohamad, O. A., Li, L., Ma, J. B., Hatab, S., Xu, L., Guo, J. W., Rasulov, B. A., Liu, Y. H., Hedlund, B. P., & Li, W. J. (2018). Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Frontiers in Microbiology, 9, 924. https://doi.org/10.3389/fmicb.2018.00924

  • National Board Parks. (2015). Coney Island Park news. NParks.

  • Noorhosseini, S. A., Fallahi, E., & Damalas, C. A. (2020). Promoting cultivation of medicinal and aromatic plants for natural resource management and livelihood enhancement in Iran. Environment, Development and Sustainability, 22, 4007-4024. https://doi.org/10.1007/s10668-019-00368-7

  • Nuengchamnong, N., & Ingkaninan, K. (2017). An on-line LC-MS/DPPH approach towards the quality control of antioxidative ingredients in Sahastara. Songklanakarin Journal of Science and Technology, 39(1), 123. https://doi.org/10.14456/sjst-psu.2017.14

  • Otłowska, O., Ślebioda, M., Kot-Wasik, A., Karczewski, J., & Śliwka-Kaszyńska, M. (2018). Chromatographic and spectroscopic identification and recognition of natural dyes, uncommon dyestuff components, and mordants: Case study of a 16th century carpet with chintamani motifs. Molecules, 23(2), 339. https://doi.org/10.3390/molecules23020339

  • Oniszczuk, T., Widelska, G., Oniszczuk, A., Kasprzak, K., Wójtowicz, A., Olech, M., Nowak, R., Wojtunik-Kulesza, K., Jóźwiak, G., & Waksmundzka-Hajnos, M. (2019). Influence of production parameters on the content of polyphenolic compounds in extruded porridge enriched with chokeberry fruit (Aronia melanocarpa (Michx.) Elliott). Open Chemistry, 17(1), 166-176. https://doi.org/10.1515/chem-2019-0019

  • Opara, E. I., & Chohan, M. (2014). Culinary herbs and spices: Their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. International Journal of Molecular Sciences, 15(10), 19183-19202. https://doi.org/10.3390/ijms151019183

  • Oyeleye, S. I., Adebayo, A. A., Ogunsuyi, O. B., Dada, F. A., & Oboh, G. (2018). Phenolic profile and enzyme inhibitory activities of almond (Terminalia catappa) leaf and stem bark. International Journal of Food Properties, 20(sup3), S2810-S2821. https://doi.org/10.1080/10942912.2017.1375945

  • Pati, S., Crupi, P., Benucci, I., Antonacci, D., Di Luccia, A., & Esti, M. (2014). HPLC-DAD–MS/MS characterization of phenolic compounds in white wine stored without added sulfite. Food Research International, 66, 207-215. https://doi.org/10.1016/j.foodres.2014.09.017

  • Patel, K. N., Patel, J. K., Patel, M. P., Rajput, G. C., & Patel, H. A. (2010). Introduction to hyphenated techniques and their applications in pharmacy. Pharmaceutical Methods, 1(1), 2-13. https://doi.org/10.4103/2229-4708.72222

  • Perez, E. R., Knapp, J. A., Horn, C. K., Stillman, S. L., Evans, J. E., & Arfsten, D. P. (2016). Comparison of LC–MS-MS and GC–MS analysis of benzodiazepine compounds included in the drug demand reduction urinalysis program. Journal of Analytical Toxicology, 40(3), 201-207. https://doi.org/10.1093/jat/bkv140

  • Penniston, K. L., Nakada, S. Y., Holmes, R. P., & Assimos, D. G. (2008). Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. Journal of Endourology, 22(3), 567-570. https://doi.org/10.1089/end.2007.0304

  • Pfundstein, B., El Desouky, S. K., Hull, W. E., Haubner, R., Erben, G., & Owen, R. W. (2010). Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): Characterization, quantitation and determination of antioxidant capacities. Phytochemistry, 71(10), 1132-1148. https://doi.org/10.1016/j.phytochem.2010.03.018

  • Pinto, M. E., Araújo, S. G., Morais, M. I., Sá, N. P., Lima, C. M., Rosa, C. A., Siqueira, E. P., Johann, S., & Lima, L. A. R. S. (2017). Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. Anais da Academia Brasileira de Ciências, 89(3), 1671-1681. https://doi.org/10.1590/0001-3765201720160908

  • Regueiro, J., Sánchez-González, C., Vallverdú-Queralt, A., Simal-Gándara, J., Lamuela-Raventós, R., & Izquierdo-Pulido, M. (2014). Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap – Orbitrap mass spectrometry. Food Chemistry, 152, 340-348. https://doi.org/10.1016/j.foodchem.2013.11.158

  • Pinheiro, A. J. M. C. R., Gonçalves, J. S., Dourado, Á. W. A., de Sousa, E. M., Brito, N. M., Silva, L. K., Batista, M. C. A., de Sá, J. C., Monteiro, C. R. A. V., Fernandes, E. S., Monteiro-Neto, V., Campbell, L. A., Zago, P. M. W., & Lima-Neto, L. G. (2018). Punica granatum L. leaf extract attenuates lung inflammation in mice with acute lung injury. Journal of Immunology Research, 2018, 6879183. https://doi.org/10.1155/2018/6879183

  • Sandín-España, P., Mateo-Miranda, M., López-Goti, C., De Cal, A., & Alonso-Prados, J. L. (2016). Development of a rapid and direct method for the determination of organic acids in peach fruit using LC–ESI-MS. Food Chemistry, 192, 268-273. https://doi.org/10.1016/j.foodchem.2015.07.012

  • Santos, S. A., Freire, C. S., Domingues, M. R. M., Silvestre, A. J., & Neto, C. P. (2011). Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography–mass spectrometry. Journal of Agricultural and Food Chemistry, 59(17), 9386-9393. https://doi.org/10.1021/jf201801q

  • Sarabhai, S., Sharma, P., & Capalash, N. (2013). Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLOS One, 8(1), e53441. https://doi.org/10.1371/journal.pone.0053441

  • Shewamene, Z., Dune, T., & Smith, C. A. (2020). Use of traditional and complementary medicine for maternal health and wellbeing by African migrant women in Australia: A mixed method study. BMC Complementary Medicine and Therapies, 20(1), 1-12. https://doi.org/10.1186/s12906-020-2852-6

  • Siew, Ng., Lasekan, O., Syed, M. K., Hussain, N. R. (2015). Physicochemical properties of Malaysian-grown tropical almond nuts (Terminalia catappa). Journal of Food Science and Technology, 52, 6623–6630. https://doi.org/10.1007/s13197-015-1737-z

  • Singh, A., Bajpai, V., Kumar, S., Sharma, K. R. (2016). Profiling of gallic and ellagic acid derivatives in different plant parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Natural Product Communications, 11(2), 239–244.

  • Szumiło, J. (2005). Kwas protokatechowy w prewencji nowotworów [Protocatechuic acid in cancer prevention]. Postępy Higieny i Medycyny Doświadczalnej, 59, 608-615.

  • Tambekar D. H., Jadhav, A. S., & Bahekar, S. S. (2017). Antimicrobial potential of haloalkaliphilic Bacillus thermotolerans from alkaline environment. International Journal of Researches in Biosciences and Agriculture Technology, V(2), 1–5. https://doi.org/10.29369/ijrbat.2017.05.ii.0050

  • Taofiq, O., González-Paramás, A. M., Barreiro, M. F., & Ferreira, I. C. (2017). Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules, 22(2), 281. https://doi.org/10.3390/molecules22020281

  • Terças, A. G., Monteiro, A. D. S., Moffa, E. B., Dos Santos, J. R., Sousa, E. M. D., Pinto, A. R., Costa, P. C., Borges, A. C., Torres, L., Barros Filho, A. K., Fernandes, E. S. (2017). Phytochemical characterization of Terminalia catappa Linn. extracts and their antifungal activities against Candida spp. Frontiers in Microbiology, 8, 595. https://doi.org/10.3389/fmicb.2017.00595

  • Tugume, P., & Nyakoojo, C. (2019). Ethno-pharmacological survey of herbal remedies used in the treatment of paediatric diseases in Buhunga parish, Rukungiri District, Uganda. BMC Complementary and Alternative Medicine, 19(1), 1-10. https://doi.org/10.1186/s12906-019-2763-6

  • Venkatalakshmi, P., Vadivel, V., Brindha, P., (2016). Identification of flavonoids in different parts of Terminalia catappa L. using LC-ESI-MS/MS and investigation of their anticancer effect in EAC cell line model. Journal of Pharmaceutical Science Research, 8(4), 176–183.

  • Walker, R. P., & Famiani, F. (2018). Organic acids in fruits: Metabolism, functions and contents. Horticultural Reviews, 45, 371-430. https://doi.org/10.1002/9781119431077.ch8

  • Wang, B. H., & Polya, G. M. (1996). Selective inhibition of cyclic AMP-dependent protein kinase by amphiphilic triterpenoids and related compounds. Phytochemistry, 41(1), 55–63. https://doi.org/10.1016/0031-9422(95)00583-8

  • Wang, S., Liu, L., Wang, L., Hu, Y., Zhang, W., & Liu, R. (2012). Structural characterization and identification of major constituents in Jitai tablets by high-performance liquid chromatography/diode-array detection coupled with electrospray ionization tandem mass spectrometry. Molecules, 17(9), 10470-10493. https://doi.org/10.3390/molecules170910470

  • Xiao, J. F., Zhou, B., & Ressom, H. W. (2012). Metabolite identification and quantitation in LC-MS/MS-based metabolomics. TrAC Trends in Analytical Chemistry, 32, 1-14. https://doi.org/10.1016/j.trac.2011.08.009

  • Yang, J., Qian, D., Jiang, S., Shang, E. X., Guo, J., & Duan, J. A. (2012). Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC–Q-TOF/MS. Journal of Chromatography B, 898, 95-100. https://doi.org/10.1016/j.jchromb.2012.04.024

  • Yang, Y., Sun, X., Liu, J., Kang, L., Chen, S., Ma, B., & Guo, B. (2016). Quantitative and qualitative analysis of flavonoids and phenolic acids in snow chrysanthemum (Coreopsis tinctoria Nutt.) by HPLC-DAD and UPLC-ESI-QTOF-MS. Molecules, 21(10), 1307. https://doi.org/10.3390/molecules21101307

  • Zhang, X. R., Kaunda, J. S., Zhu, H. T., Wang, D., Yang, C. R., & Zhang, Y. J. (2019). The genus Terminalia (Combretaceae): An ethnopharmacological, phytochemical and pharmacological review. Natural Products and Bioprospecting, 9(6), 357-392. https://doi.org/10.1007/s13659-019-00222-3

  • Zhu, M., Dong, X., & Guo, M. (2015). Phenolic profiling of Duchesnea indica combining macroporous resin chromatography (MRC) with HPLC-ESI-MS/MS and ESI-IT-MS. Molecules, 20(12), 22463-22475. https://doi.org/10.3390/molecules201219859

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2257-2021

Download Full Article PDF

Share this article

Recent Articles