e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 46 (3) Aug. 2023 / JTAS-2675-2023


Mosquito as West Nile Virus Vector: Global Timeline of Detection, Characteristic, and Biology

Jafar Ali Natasha, Abd Rahaman Yasmin, Reuben Sunil Kumar Sharma, Saulol Hamid Nur-Fazila, Md Isa Nur-Mahiza, Siti Suri Arshad, Hussni Omar Mohammed, Kiven Kumar, Shih Keng Loong and Mohd Kharip Shah Ahmad Khusaini

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 3, August 2023


Keywords: Characteristics, mosquitoes, timeline, vectors, West Nile virus

Published on: 30 August 2023

Mosquitoes are extremely important vectors that transmit zoonotic West Nile virus (WNV) globally, resulting in significant outbreaks in birds, humans, and mammals. The abundance of mosquito vectors combined with the migratory flying behaviour of wild birds across the globe has exacerbated the dynamics of WNV infection. Depth understanding of the WNV infection requires a comprehensive understanding of the character of the vector in terms of their taxonomy, morphology, biology, behaviours, preferences, and factors that promote their breeding. Most susceptible animals and humans may experience serious neurological illnesses such as encephalitis. Little is known about the susceptibility of mosquitoes to WNV infection. This review provides insightful knowledge about the characteristics of mosquitoes that carry WNV and their susceptibility to WNV infection. The context of mosquito’s involvement in WNV transmission is demonstrated through space and time from the 1950’s until to date. The historical timeline of WNV transmission strength was significantly intensified via the complex interactions between vector, virus, and environment. Such knowledge will provide valuable insights into vector control intervention mitigation strategies, especially in tropical climate countries like Malaysia.

  • Ahlers, L. R. H., & Goodman, A. G. (2018). The immune responses of the animal hosts of West Nile virus: A comparison of insects, birds, and mammals. Frontiers in Cellular and Infection and Microbiology, 8, 96.

  • Ain-Najwa, M. Y., Yasmin, A. R., Omar, A. R., Arshad, S. S., Abu, J., Mohammed, H. O., Kumar, K., Loong, S. K., Rovie-Ryan, J. J., & Mohd-Kharip-Shah, A.-K. (2020). Evidence of West Nile virus infection in migratory and resident wild birds in west coast of peninsular Malaysia. One Health, 10, 100134.

  • Allen, N. (2020). West Nile virus outbreak kills two in southern Spain. Reuters.

  • American Mosquito Control Association. (2018). Mosquito biology. AMCA.

  • Anderson, J. F., & Main, A. J. (2006). Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the Northeastern United States. The Journal of Infectious Diseases, 194(11), 1577-1599.

  • Anderson, S. L., Richards, S. L., & Smartt, C. T. (2010). A simple method for determining arbovirus transmission in mosquitoes. Journal of the American Mosquito Control Association, 26(1), 108-111.

  • Asnis, D. S., Conetta, R., Waldman, G., & Teixeira, A. A. (2006). The West Nile virus encephalitis outbreak in the United States (1999-2000): From flushing, New York, to beyond its borders. Annals of the New York Academy of Sciences, 951(1), 161-171.

  • Balenghien, T., Vazeille, M., Grandadam, M., Schaffner, F., Zeller, H., Reiter, P., Sabatier, P., Fouque, F., & Bicout, D. J. (2008). Vector competence of some French Culex and Aedes mosquitoes for West Nile virus. Vector-Borne and Zoonotic Diseases, 8(5), 589-596.

  • Bashar, K., Rahman, M. S., Nodi, I. J., & Howlader, A. J. (2016). Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae. Pathogen and Global Health, 110(2), 48-61.

  • Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., & Kaiser, A. (2010). Mosquito and their control. Springer.

  • Benbetka, S., Hachid, A., Benallal, K. E., Benbetka, C., Khaldi, A., Bitam, I., & Harrat, Z. (2018). First field evidence infection of Culex perexiguus by West Nile virus in Sahara Oasis of Algeria. Journal of Vector Borne Diseases, 55(4), 305-309.

  • Blagrove, M. S., Sherlock, K., Chapman, G. E., Impoinvil, D. E., McCall, P. J., Medlock, J. M., Lycett, G., Solomon, T., & Baylis, M. (2016). Evaluation of the vector competence of a native UK mosquito Ochlerotatus detritus (Aedes detritus) for dengue, chikungunya and West Nile viruses. Parasites and Vectors, 9, 452.

  • Bolling, B. G., Weaver, R. B., Tesh, R. B., & Vasilakis, N. (2015). Insect-specific virus discovery: Significance for the arbovirus community. Viruses, 7(9), 4911-4928.

  • Bowen, E. T. W., Simpson, D. I. H., Platt, G. S., Way, H. J., Gordon-Smith, C. E., Ching, C. Y., & Casals, J. (1970). Arbovirus infections in Sarawak: The isolation of Kunjin virus from mosquitoes of the Culex pseudovishnui group. Annals of Tropical Medicine and Parasitology, 64(3), 263-268.

  • Boyer, S., Luciano, T. M., Randriamaherijaona, S., Andrianaivolambo, L., & Cardinale, E. (2014). Mosquitoes sampling strategy for studying West Nile virus vectors in Madagascar: Abundance, distribution and methods of catching in high risk areas. Archives de I’Institut Pasteur De Madagascar, 71, 1–4.

  • Brustolin, M., Talavera, S., Santamaría, C., Rivas, R., Pujol, N., Aranda, C., Marquès, E., Valle, M., Verdún, M., Pagès, N., & Busquets, N. (2016). Culex pipiens and Stegomyia albopicta (= Aedes albopictus) populations as vectors for lineage 1 and 2 West Nile virus in Europe. Medical and Veterinary Entomology, 30(2), 166-173.

  • Burkett-Cadena, N. D., & Vittor, A. Y. (2018). Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic and Applied Ecology, 26, 101-110.

  • Centers for Disease Control and Prevention. (2016). Mosquito species in which West Nile virus has been detected, United States, 1999-2016. CDC.

  • Chancey, C., Grinev, A., Volkova, E., & Rios, M. (2015). The global ecology and epidemiology of West Nile virus. BioMed Research International, 2015, 376230.

  • Cheng, G., Liu, Y., Wang, P., & Xiao, X. (2016) Mosquito defense strategies against viral infection. Trends in Parasitology, 32(3), 177-186.

  • Ciota, A. T., Styer, L. M., Meola, M. A., & Kramer, L. D. (2011) The costs of infection and resistance as determinants of West Nile virus susceptibility in Culex mosquitoes. BMC Ecology, 11, 23.

  • Colpitts, T. M., Conway, M. J., Montgomery, J. J., & Fikrig, E. (2012). West Nile virus: Biology, transmission, and human infection. Clinical Microbiology Reviews, 25(4), 635–648.

  • Deichmeister, J. M., & Telang, A. (2011). Abundance of West Nile virus mosquito vectors in relation to climate and landscape variables. Journal of Vector Ecology, 36(1), 75-85.

  • Diaz-Nieto, L. M., D’Aleessio, C., Perotti, M. A., & Berón, C. M. (2016). Culex pipiens development is greatly influenced by native bacteria and exogenous yeast. PLOS One, 11(4), e0153133.

  • DiMenna, M. A., Bueno, R., Parmenter, R. R., Norris, D. E., Sheyka, J. M., Molina, J. L., LaBeau, E. M., Hatton, E. S., & Glass, G. E. (2006). Emergence of West Nile virus in mosquito (Diptera: Culicidae) communities of the New Mexico Rio Grande Valley. Journal of Medical Entomology, 43(3), 594-599.[594:EOWNVI]2.0.CO;2

  • Dohm, D. J., Sardelis, M. R., & Turell, M. J. (2002). Experimental vertical transmission of West Nile virus by Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology, 39(4),640-644.

  • Eastwood, G., Kramer, L. D., Goodman, S. J., & Cunningham, A. A. (2011). West Nile virus vector competency of Culex quinquefasciatus mosquitoes in the Galápagos Islands. The American Journal of Tropical Medicine and Hygiene, 85(3), 426-433.

  • Ebi, K. L., & Nealon, J. (2016). Dengue in a changing climate. Environmental Research, 151, 115-123.

  • Epstein P. R. (2001). West Nile virus and the climate. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 78(2), 367–371.

  • Farajollahi, A., Fonseca, D. M., Kramer, L. D., & Kilpatrick, A. M. (2011). Bird biting mosquito and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection Genetics and Evolutions, 78(2), 1577-1585.

  • Farnesi, L. C., Vargas, H. C. M., Valle, D., & Rezende, G. L., (2017). Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLOS Neglected Tropical Disease, 11(10), e0006063.

  • Goddard, L. B., Roth, A. E., Reisen, W. K., & Scott, T. W. (2003). Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. Journal of Medical Entomology, 40(6), 743–746.

  • Gomes, B., Sousa, C. A., Vicente, J. L., Pinho, L., Calderón, I., Arez, E., Almeida, A. P. G., Donnelly, M. J., & Pinto, J. (2013). Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization. Parasites and Vectors, 6, 93.

  • Ha, Y.-R., Oh, S.-R., Seo, E.-S., Kim, B.-H., Lee, D.-K., & Lee S.-J. (2014). Detection of heparin in the salivary gland and midgut of Aedes togoi. The Korean Journal of Parasitology, 52(2), 183-188.

  • Hamer, G. L., Kitron, U. D., Goldberg, T. L., Brawn, J. D., Loss, S. R., Ruiz, M. O., Hayes D. B., & Walker, E. D. (2009). Host selection by Culex pipiens mosquitoes and West Nile virus amplification. The American Journal of Tropical Medicine and Hygiene, 80(2), 268-278.

  • Hayes, E. B., Komar, N., Nasci, R. S., Montgomery, S. P., O’Leary, D. R., & Campbell, G. L. (2005). Epidemiology and transmission dynamics of West Nile virus disease. Emerging Infectious Diseases, 11(8), 1167-1173.

  • Jeffery, J., Rohela, M., Muslimin, M., Abdul Aziz, S. M. N., Jamaiah, I., Kumar, S., Tan, T. C., Lim, Y. A. L., Nissapatorn, V., & Abdul-Azizi, N. M. (2012). Illustrated keys: Some mosquitoes of Peninsula Malaysia, Malaysia. Universiti Malaya Press.

  • Kampen, H., Holicki, C. M., Ziegler, U., Groschup, M. H., Tews, B. A., & Werner, D. (2020). West Nile virus mosquito vectors (Diptera: Culicidae) in Germany. Viruses, 12(5), 493.

  • Khan, S. A., Chowdhury, P., Choudhury, P., & Dutta, P. (2017). Detection of West Nile virus in six mosquito species in synchrony with seroconversion among sentinel chickens in India. Parasites and Vectors, 10(1), 13.

  • Kilpatrick, A. M., Meola, M. A., Moudy, R. M., & Kramer, L. D. (2008). Temperature, viral genetics and the transmission of West Nile virus by Culex pipiens mosquitoes. PLOS Pathogen, 4(6), e1000092.

  • Kitaoka, M. (1950). Experimental transmission of the West Nile virus by the mosquito. The Japanese Medical Journal, 3(2), 77-81.

  • Komar, N., Langevin, S., Hinten, S., Nemeth, N., Edwards, E., Hettler, D., Davis, B., Bowen, R., & Bunning, M. (2003). Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerging Infectious Diseases, 9(3), 311-322.

  • Komp, W. H. W. (1923). Guide to mosquito identification for field workers engaged in Malaria control in the United States. Public Health Reports, 38(20), 1061-1080.

  • Kong, X. Q., & Wu, C. W. (2010). Mosquito proboscis: An elegant biomicroelectromechanical system. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 82(1), 011910.

  • Kramer, L. D., Hardy, J. L., & Presser, S. B. (1983). Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus. The American Journal of Tropical Medicine and Hygiene, 32(5), 1130-1139.

  • Kweka, E. J., Baraka, V., Mathias, L., Mwang’onde, B., Baraka, G., Lucile, L., & Mahande, A. M., (2018). Ecology of Aedes mosquitoes, the major vectors of arboviruses in human population. In J. A. Falcón-Lezama, M. Betancourt-Cravioto, & R. Tapia-Conyer (Eds.), Dengue fever — A resilient threat in the face of innovation (pp. 39-55). IntechOpen.

  • Lawler, S. P., & Lanzaro, G. C. (n.d.). Managing mosquitoes on the farm.

  • Lewis, I. (2020, October 9). Clark Middleton: Twin Peaks and The Blacklist actor dies aged 63 of West Nile virus. Independent.

  • Lu, Z., Fu, S.-H., Cao, L., Tang, C.-J., Zhang, S., Li, Z.-X., Tusong, M., Yao, X.-H., Zhang, H.-L., Wang, P.-Y., Wumaier, M., Yuan, X.-Y., Li, M.-H., Zhu, C.-Z., Fu, L.-P., & Liang, G.-L. (2014). Human infection with West Nile virus, Xinjiang, China, 2011. Emerging Infectious Diseases, 20(8), 1421-1423.

  • Manimegalai, K., & Sukanya, S., (2014). Biology of the filarial vector, Culex quinquefasciatus (Diptera: Culicidae). International Journal of Current Microbiology and Applied Sciences, 3(4), 718-724.

  • Maquart, M., Boyer, S., Rakotoharinome, V. M., Ravaomanana, J., Tantely, M. L., Heraud, J., & Cardinale, E. (2016). High prevalence of West Nile virus in domestic birds and detection in 2 new mosquito species in Madagascar. PLOS One, 11(1), e0147589.

  • Marlina, S., Radzi, S. F., Lani, R., Sieng, K. C., Rahim, N. F., Hassan, H., Li-Yen, C., AbuBakar, S., & Zandi, K. (2014). Seroprevalence screening for the West Nile virus in Malaysia’s Orang Asli population. Parasites and Vectors, 7, 597.

  • Martínez-de la Puente, J., Ferraguti, M., Ruiz, S., Roiz, D., Llorente, F., Pérez-Ramírez, E., Jiménez-Clavero, M. A., Soriguer, R., & Figuerola, J. (2018). Mosquito community influences West Nile virus seroprevalence in wild birds: Implications for the risk of spillover into human populations. Scientific Reports, 8, 2599.

  • Mateo, R, Xiao, S.-Y., Guzman, H., Lei, H., da Rosa, A. P. T., & Tesh, R. B. (2006). Effects of immunosuppression on West Nile virus infection in hamsters. The American Journal of Tropical Medicine and Hygiene, 75(2), 356-362.

  • Mixão, V., Barriga, D. B., Parreira, R., Novo, M. T., Sousa, C. A., Frontera, E., Venter, M., Braack, L., & Almeida, A. P. G. (2016). Comparative morphological and molecular analysis confirms the presence of the West Nile virus mosquito vector Culex univittatus, in the Siberian peninsula. Parasites and Vectors, 9, 601.

  • Moudy, R. M., Meola M. A., Morin, L. L., Ebel, G. D., & Kramer, L. D. (2007). A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. American Journal of Tropical Medicine and Hygiene, 77(2), 365-370.

  • Mullen, G. R., & Durden, L. A. (Eds.) (2019). Medical and veterinary entomology (3rd ed.). Academic Press.

  • Orshan, L., Bin, H., Schnur, H., Kaufman, A., Valinsky, A., Shulman, L., Weiss, L., Mendelson, E., & Pener, H. (2008). Mosquito vectors of West Nile fever in Israel. Journal of Medical Entomology, 45(5), 939-947.[939:mvownf];2

  • Paz, S. (2015). Climate change impacts on West Nile virus transmission in a global context. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), 20130561.

  • Philip, C. B., & Smadel, J. E. (1943). Transmission of West Nile virus by infected Aedes albopictus. Experimental Biology and Medicine, 53(1), 49-50.

  • Rappole, J. H., Derrickson, S. R., & Hubálek, Z. (2000). Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerging Infectious Diseases, 6(4), 319-328.

  • Reisen, W. K., Fang, Y., & Martinez, V. M. (2014). Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). Journal of Medical Entomology, 43(2), 309-317.

  • Ribeiro, J. M. C., & Francischetti, I. M. B. (2003). Role of arthropod saliva in blood feeding: Sialome and post-sialome perspectives. Annual Review of Entomology, 48, 73-88.

  • Richards, S. L., Mores, C. N., Lord, C. C., & Tabachnick, W. J. (2007). Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus Say (Diptera: Culicidae) for West Nile virus. Vector Borne for Zoonotic Diseases, 7(4), 629-636.

  • Rizzoli, A., Tagliapietra, V., Cagnacci, F., Marini, G., Arnoldi, D., Rosso, F., & Rosà, R. (2019). Parasites and wildlife in a changing world: The vector-host-pathogen interaction as a learning case. International Journal for Parasitology: Parasites and Wildlife, 9, 394-401.

  • Rohani, A., Chan, S. T., Abdullah, A. G., Tanrag, H., & Lee, H. L. (2008). Species composition of mosquito fauna in Ranau, Sabah, Malaysia. Tropical Biomedicine, 25(3), 232-236.

  • Rossi, S. L., Ross, T. M., & Evans, J. D. (2010). West Nile Virus. Clinics in Laboratory Medicine, 30(1), 47-65.

  • Rueda, L. M. (2008). Global diversity of mosquitoes (Insecta: Diptera: Culicidaee) in freshwater. Hydrobiologia, 595, 477-487.

  • Service, M. (2012). Introduction to mosquitoes (Culicidae). In Medical entomology for students (pp. 1-32). Cambridge University Press.

  • Sim, S., Jupatanakul, N., & Dimopoulos, G. (2014). Mosquito immunity against arboviruses. Viruses, 6(11), 4479–4504.

  • Smithburn, K. C., Hughes, T. P., Burke, A. W., & Paul, J. H. (1940). A neurotropic virus isolated from the blood of a native of Uganda. The American Journal of Tropical and Medicine and Hygiene, 20, 471-472.

  • Snapinn, K. W., Holmes, E. C., Young, D. S., Bernard, K. A., Kramer, L. D., & Ebel, G. D. (2007). Declining growth rate of West Nile virus in North America. Journal of Virology, 81(5), 2531-2534.

  • Styer, L. M., Meola, M. A., & Kramer, L. D. (2007). West Nile virus infection decreases fecundity of Culex tarsalis females. Journal of Medical Entomology, 44(6), 1074-1085.[1074:wnvidf];2

  • Tandina, F., Doumbo, O., Yaro, A. S., Traoré, S. F., Parola, P., & Robert, V. (2018). Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasites and Vectors, 11, 467.

  • Taylor, R. M., Hurlbut, H. S., Dressler, H. R., Spangler, E. W., & Thrasher, D. (1953). Isolation of West Nile virus from Culex mosquitoes. The Journal of the Egyptian Medical Association, 36(3), 199-208.

  • Turell, M. J., O’Guinn, M., & Oliver, J. (2000). Potential for New York mosquitoes to transmit West Nile virus. The American Journal of Tropical and Medicine and Hygiene, 62(3), 413-414.

  • Vakali, A., Beleri, S., Tegos, N., Fytrou, A., Mpimpa, A., Sergentanis, T. N., Pervanidou, D., & Patsoula, E. (2022). Entomological surveillance activities in regions in Greece: Data on mosquito species abundance and West Nile virus detection in Culex pipiens pools (2019–2020). Tropical Medicine and Infectious Disease, 8(1), 1.

  • Valiakos, G., Papaspyropoulos, K., Giannakopoulos, A., Birtsas, P., Tsiodras, S., Hutchings, M. R., Spyrou, V., Pervanidou, D., Athanasiou, L.V., Papadopoulos, N., Tsokana, C., Baka, A., Manolakou, K., Chatzpoulos, D., Artois, M., Yon, L., Hannant, D., Petrovska, L., Hadjichristodoulou, C., & Billinis, C. (2014). Use of wild bird surveillance, human case data and GIS spatial analysis for predicting spatial distributions of West Nile virus in Greece. PLOS One, 9(5), e96935.

  • van den Hurk, A. F., Hall-Mendelin, S., Webb, C. E., Tan, C. S. E., Frentiu, F. D., Prow, N. A., & Hall, R. A. (2014). Role of enhanced vector transmission of a new West Nile virus strain in an outbreak of equine disease in Australia in 2011. Parasites and Vectors, 7, 586.

  • Vogels, C. B. F., Göertz, G. P., Pijlman, G. P., & Koenraadt, C. J. M. (2017). Vector competence of European mosquitoes for West Nile virus. Emerging Microbes and Infections, 6(11), 1-13.

  • Vora, N. (2008). Impact of anthropogenic environmental alterations on vector-borne diseases. Medscape Journal of Medicine, 10(10), 238.

  • Wanasen N., Nussenzveig, R. H., Champagne, D. E., Soong, L., & Higgs, S. (2004). Differential modulation of murine host immune response by salivary gland extracts from the mosquitoes Aedes aegypti and Culex quinquefasciatus. Medical and Veterinary Entomology, 18(2), 191-199.

  • Xia, H., Wang, Y., Atoni, E., Zhang, B., & Yuan, Z. (2018). Mosquito-associated viruses in China. Virologica Sinica, 33, 5-20.

  • Zeidner, N. S., Higgs, S., Happ, C. M., Beaty, B. J., & Miller, B. R. (1999). Mosquito feeding modulates Th1 and Th2 cytokines in flavivirus susceptible mice: An effect mimicked by injection of sialokinins, but not demonstrated in flavivirus resistant mice. Parasite Immunology, 21(1), 35-44.