PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (4) Nov. 2024 / JTAS-3006-2024

 

Effects of Beneficial Bacterial Inoculation on Arsenic Hyperaccumulation Ability of Pteris vittata under Planthouse Conditions

Aminu Salisu Mu’azu, Hazzeman Haris, Kamarul Zaman Zarkasi, Nyok-Sean Lau and Amir Hamzah Ahmad Ghazali

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 4, November 2024

DOI: https://doi.org/10.47836/pjtas.47.4.18

Keywords: Arsenic, beneficial bacteria, contamination, hyperaccumulation, Pteris vittata, soil

Published on: 29 November 2024

The widespread problem of arsenic buildup in soil is often addressed through phytoremediation techniques. Pteris vittata, an herbaceous fern known as the Chinese ladder brake, exhibits exceptional arsenic hyperaccumulation, storing over 27,000 mg of arsenic per kilogram in its aboveground biomass as dry weight. Planting P. vittata in arsenic-contaminated areas emerges as a promising strategy, facilitating the fern’s absorption and accumulation of arsenic from the soil and, consequently, mitigating environmental arsenic levels. This study was conducted to assess the impact of two bacterial strains, Bacillus sp. 3P20 (CCB-MBL 5013) and Enterobacter sp. 3U4 (CCB-MBL 5014), on arsenic hyperaccumulation by P. vittata. The total arsenic content in both soil and plant samples was quantified using inductively coupled plasma-optical emission spectrometry. The results showed a significant difference (P < 0.0001) between P. vittata inoculated with Bacillus sp. 3P20 and spiked with 200 and 500 mg/L arsenic, having a total arsenic content of 240 and 255.25 mg/kg, respectively, compared to the control (un-inoculated), which has 143 mg/kg. Additionally, there was a significant difference (P < 0.0001) between P. vittata inoculated with Enterobacter sp. 3U4 and spiked with 200 and 500 mg/L arsenic. Although no significant increase in the leaf greenness value of the plant was observed in the first and fourth weeks a noteworthy increase was recorded after the eighth week of transplanting. These indicate that the bacterial strains promoted plant growth and significantly enhanced the efficiency of arsenic hyperaccumulation by the fern.

  • Alexopoulos, A. A., Marandos, E., Assimakopoulou, A., Vidalis, N., Petropoulos, S. A., & Karapanos, I. C. (2021). Effect of nutrient solution pH on the growth, yield and quality of Taraxacum officinale and Reichardia picroides in a floating hydroponic system. Agronomy, 11(6), 1118. https://doi.org/10.3390/agronomy11061118

  • Anderson, T. S., Martini, M. R., Villiers, D. D., & Timmons, M. B. (2017). Growth and tissue elemental composition response of butterhead lettuce (Lactuca sativa, cv Flandria) to hydroponic conditions at different pH and alkalinity. Horticulturae, 3(3), 41. https://doi.org/10.3390/horticulturae3030041

  • Azia, F., & Stewart, K. A. (2001). Relationships between extractable chlorophyll and SPAD values in muskmelon leaves. Journal of Plant Nutrition, 24(6), 961-966. https://doi.org/10.1081/PLN-100103784

  • Babalar, M., Daneshvar, H., Díaz-Pérez, J. C., Nambeesan, S., Tabrizi, L., & Delshad, M. (2022). Effects of organic and chemical nitrogen fertilization and postharvest treatments on the visual and nutritional quality of fresh-cut celery (Apium graveolens L.) during storage. Food Science and Nutrition, 11(1), 320-333. https://doi.org/10.1002/fsn3.3063

  • Biswas, S., & Das, R. (2022). Hydroponics: A promising modern intervention in agriculture. Agriculture and Food: E-Newsletter, 4(1), 334-338.

  • Chang, C.-L., Hong, G.-F., & Fu, W.-L. (2018). Design and implementation of a knowledge-based nutrient solution irrigation system for hydroponic applications. Transactions of the American Society of Agricultural and Biological Engineers, 61(2), 369-379.

  • Colla, G., Suarez, C. M. C., Cardarelli, M., & Rouphael, Y. (2010). Improving nitrogen use efficiency in melon by grafting. HortScience, 45(4), 559-565. https://doi.org/10.21273/HORTSCI.45.4.559

  • Fathidarehnijeh, E., Nadeem, M., Cheema, M., Thomas, R., Krishnapillai, M., & Galagedar, L. (2023). Current perspective on nutrient solution management strategies to improve the nutrient and water use efficiency in hydroponic systems. Canadian Journal of Plant Science, 104(2), 88-102. https://doi.org/10.1139/cjps-2023-0034

  • Gillespie, D. P., Kubota, C., & Miller, S. A. (2020). Effects of low pH of hydroponic nutrient solution on plant growth, nutrient uptake, and root rot disease incidence of basil (Ocimum basilicum L.). HortScience, 55(8), 1251–1258. https://doi.org/10.21273/hortsci14986-20

  • Gillespie, D. P., Papio, G., & Kubota, C. (2021). High nutrient concentrations of hydroponic can improve growth and nutrient uptake of spinach (Spinacia oleracea L.) grown in acidic nutrient solution. HortScience, 56(6), 687-694. https://doi.org/10.21273/HORTSCI15777-21

  • Gitelson, A. A., Grits, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271-282. https://doi.org/10.1078/0176-1617-00887

  • Gumisiriza, M. S., Ndakidemi, P., Nalunga, A., & Mbega, E. R. (2022). Building sustainable societies through vertical soilless farming: A cost-effectiveness analysis on a small-scale non-greenhouse hydroponic system. Sustainable Cities and Society, 83, 103923. https://doi.org/10.1016/j.scs.2022.103923

  • Havé, M., Marmagne, A., Chardon, F., & Masclaux-Daubresse, C. (2017). Nitrogen remobilisation during leaf senescence: Lessons from Arabidopsis to crops. Journal of Experimental Botany, 68(10), 2513-2529. https://doi.org/10.1093/jxb/erw365

  • Hopkinson, S., & Harris, M. (2019). Effect of pH on hydroponically grown bush beans (Phaseolus vulgaris). International Journal of Environment Agriculture and Biotechnology, 4(1), 142-145. https://doi.org/10.22161/ijeab/4.1.23

  • Jabatan Perancangan Bandar dan Desa Semenanjung Malaysia. (n.d.). Panduan pelaksanaan inisiatif pembangunan kejiranan hijau: Pembangunan kebun kejiranan [Green neighbourhood development initiative implementation guide: Neighbourhood garden development]. PLANMalaysia. https://mytownnet.planmalaysia.gov.my/wp-content/uploads/2023/03/LAPORAN-PANDUAN-PELAKSANAAN-KEBUN-KEJIRANANlow.pdf

  • Kim, M. J., Moon, Y., Tou, J. C., Mou, B., & Waterland, N. L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49, 19-34. https://doi.org/10.1016/j.jfca.2016.03.004

  • Konstantopoulou, E., Kapotis, G., Salachas, G., Petropoulos, S. A., Karapanos, I. C., & Passam, H. C. (2010). Nutritional quality of greenhouse lettuce at harvest and after storage in relation to N application and cultivation season. Scientia Horticulturae, 125(2), 93.e1-93.e5. https://doi.org/10.1016/j.scienta.2010.03.003

  • Kudirka, G., Viršilė, A., Sutulienė, R., Laužikė, K., & Samuolienė, G. (2023). Precise management of hydroponic nutrient solution pH: The effects of minor pH changes and MES buffer molarity on lettuce physiological properties. Horticulturae, 9(7), 837. https://doi.org/10.3390/horticulturae9070837

  • Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207-220. https://doi.org/10.1016/S0925-5214(00)00133-2

  • Ling, Q., Huang, W., & Jarvis, P. (2011). Use of SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis Research, 107, 209–214. https://doi.org/10.1007/s11120-010-9606-0

  • Mariani, M., Cahaya, N. M., & Ding, P. (2018). Physicochemical characteristics of Carissa congesta fruit during maturation. Acta Horticulturae, 1213, 461-464. https://doi.org/10.17660/ActaHortic.2018.1213.68

  • Md Nor, S., Ding, P., & Tan, J. C. (2023). Locule position and thawing duration affect postharvest quality of freshly cryo-frozen Musang King Durian fruit. Pertanika Journal of Tropical Agricultural Science, 46(2), 517-528. https://doi.org/10.47836/pjtas.46.2.09

  • Miceli, A., Mineo, V., & Planeta, D. (2018). Effect of nitrogen fertilizer level on quality and shelf-life of fresh cut Swiss chard. Acta Horticulturae, 1209, 271-276. https://doi.org/10.17660/ActaHortic.2018.1209.39

  • Ministry of Energy, Green Technology and Water. (2009). National Green Technology Policy (1st ed.). National Library of Malaysia.

  • Muhammad, R. M., & Rabu, M. R. (2015). The potential of urban farming technology in Malaysia: Policy intervention. Food and Fertilizer Technology Center for the Asian and Pacific Region Agricultural Policy Platform. https://ap.fftc.org.tw/article/965

  • Noumedem, J. A. K., Djeussi, D. E., Hritcu, L., Mihasan, M., & Kuete, V. (2017). Lactuca sativa. In V. Kuete (Ed.), Medicinal spices and vegetables from Africa: Therapeutic potential against metabolic, inflammatory, infectious and systemic diseases (pp. 437-449). Academic Press. https://doi.org/10.1016/B978-0-12-809286-6.00020-0

  • Nursyafiza, M. (2023). Effects of nutrient solution’s electrical conductivity rates on lettuce (Lactuca sativa L.) performance under static hydroponic cultivation [Unpublished Bachelor dissertation]. Universiti Putra Malaysia.

  • Saleem, H. M., Usman, K., Rizwan, M., Al Jabri, H., & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. https://doi.org/10.3389/fpls.2022.1033092

  • Samarakoon, U., Palmer, J., Ling, P., & Altland, J. (2020). Effects of electrical conductivity, pH, and foliar application of calcium chloride on yield and tipburn of Lactuca sativa grown using the nutrient–film technique. HortScience, 55(8), 1265-1271. https://doi.org/10.21273/HORTSCI15070-20

  • Savvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry – A review. European Journal of Horticultural Science, 83(5), 280-293. https://doi.org/10.17660/eJHS.2018/83.5.2

  • Singh, H., & Bruce, D. (2016). Electrical conductivity and pH guides for hydroponics. Oklahoma Cooperative Extension Service. https://extension.okstate.edu/fact-sheets/print-publications/hla/electrical-conductivity-and-ph-guide-for-hydroponics-hla-6722.pdf

  • Singh, H., Dunn, B. L., Payton, M., & Brandenberger, L. (2019). Selection of fertilizer and cultivar of sweet pepper and eggplant for hydroponic production. Agronomy, 9(8), 433. https://doi.org/10.3390/agronomy9080433

  • Solis, E. S., & Gabutan, J. U. (2023). Hydroponic lettuce (Lactuca sativa L. var. Lalique) production using commercially available nutrient solutions. International Journal of Agriculture and Environmental Research, 9(3), 330-341. https://doi.org/10.51193/IJAER.2023.9306

  • Sonneveld, C., & Voogt, W. (2009). Plant nutrition in future greenhouse production. In Plant nutrition of greenhouse crops (pp. 393-403). Springer. https://doi.org/10.1007/978-90-481-2532-6_17

  • Statista. (2024). Malaysia: Urbanization from 2013 to 2023. https://www.statista.com/statistics/455880/urbanization-in-malaysia/

  • Velazquez-Gonzalez, R. S., Garcia-Garcia, A. L., Ventura-Zapata, E., Barceinas-Sanchez, J. D. O., & Sosa-Savedra, J. C. (2022). A review on hydroponics and the technologies associated for medium- and small-scale operations. Agriculture, 12(5), 646. https://doi.org/10.3390/agriculture12050646

  • Weston, L. A., & Barth, M. M. (1997). Preharvest factors affecting postharvest quality of vegetables. HortScience, 32(5), 812-816. https://doi.org/10.21273/HORTSCI.32.5.812

  • Yuen, M. K. (2023, August 20). Interactive: Malaysia’s thriving fruits and vegetables. The Star. https://www.thestar.com.my/news/nation/2023/08/20/interactive-malaysias-thriving-fruits-and-vegetables

  • Zhao, W., Zhao, H., Wang, H., & He, Y. (2022). Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants. Frontiers in Plant Science, 13, 1044500. https://doi.org/10.3389/fpls.2022.1044500

  • Abou-Shanab, R. A. I., Mathai, P. P., Santelli, C., & Sadowsky, M. J. (2020). Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species. Ecotoxicology and Environmental Safety, 195, 110458. https://doi.org/10.1016/j.ecoenv.2020.110458

  • Alka, S., Shahir, S., Ibrahim, N., Chai, T.-T., Bahari, Z. M., & Manan, F. A. (2020). The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environmental Technology and Innovation, 17, 100602. https://doi.org/10.1016/j.eti.2020.100602

  • Antenozio, M. L., Giannelli, G., Marabottini, R., Brunetti, P., Allevato, E., Marzi, D., Capobianco, G., Bonifazi, G., Serranti, S., Visioli, G., Stazi, S. R., & Cardarelli, M. (2021). Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria. Scientific Reports, 11, 6794. https://doi.org/10.1038/s41598-021-86076-7

  • Bui, T. K. A. (2017). Phytoremediation potential of Pteris vittata L. and Eleusine indica L. through field study and greenhouse experiments. Journal of Vietnamese Environment, 8(3), 156–160. https://doi.org/10.13141/jve.vol8.no3.pp156-160

  • Cai, C., Lanman, N. A., Withers, K. A., DeLeon, A. M., Wu, Q., Gribskov, M., Salt, D. E., & Banks, J. A. (2019). Three genes define a bacterial-like arsenic tolerance mechanism in the arsenic hyperaccumulating fern Pteris vittata. Current Biology, 29(10), 1625-1633.e3. https://doi.org/10.1016/j.cub.2019.04.029

  • Debela, A. S., Dawit, M., Tekere, M., & Itanna, F. (2022). Phytoremediation of soils contaminated by lead and cadmium in Ethiopia, using Endod (Phytolacca dodecandra L). International Journal of Phytoremediation, 24(13), 1339–1349. https://doi.org/10.1080/15226514.2021.2025336

  • Ghosh, S., Mohapatra, B., Satyanarayana, T., & Sar, P. (2020). Molecular and taxonomic characterization of arsenic (As) transforming Bacillus sp. strain IIIJ3-1 isolated from As-contaminated groundwater of Brahmaputra river basin, India. BMC Microbiology, 20, 256. https://doi.org/10.1186/s12866-020-01893-6

  • Guo, J., Muhammad, H., Lv, X., Wei, T., Ren, X., Jia, H., Atif, S., & Hua, L. (2020). Chemosphere Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere, 246, 125823. https://doi.org/10.1016/j.chemosphere.2020.125823

  • Han, Y.-H., Jia, M.-R., Wang, S.-S., Deng, J.-C., Shi, X.-X., Chen, D.-L., Chen, Y., & Ma, L. Q. (2020). Arsenic accumulation and distribution in Pteris vittata fronds of different maturity: Impacts of soil As concentrations. Science of the Total Environment, 715, 135298. https://doi.org/10.1016/j.scitotenv.2019.135298

  • Kong, Z., Deng, Z., Glick, B. R., Wei, G., & Chou, M. (2017). A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. Annals of Microbiology, 67, 49–58. https://doi.org/10.1007/s13213-016-1235-1

  • Lampis, S., Santi, C., Ciurli, A., Andreolli, M., & Vallini, G. (2015). Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: A soil bioremediation perspective. Frontiers in Plant Science, 6, 80. https://doi.org/10.3389/fpls.2015.00080

  • Liao, V. H.-C., Chu, Y.-J., Su, Y.-C., Hsiao, S.-Y., Wei, C.-C., Liu, C.-W., Liao, C.-M., Shen, W.-C., & Chang, F.-J. (2011). Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Journal of Contaminant Hydrology, 123(1–2), 20–29. https://doi.org/10.1016/j.jconhyd.2010.12.003

  • Liu, S.-H., Zeng, G.-M., Niu, Q.-Y., Liu, Y., Zhou, L., Jiang, L.-H., Tan, X.-F., Xu, P., Zhang, C., & Cheng, M. (2017). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25–33. https://doi.org/10.1016/j.biortech.2016.11.095

  • Lu, Y., Liao, S., Ding, Y., He, Y., Gao, Z., Song, D., Tian, W., & Zhang, X. (2022). Effect of Stevia rebaudiana Bertoni residue on the arsenic phytoextraction efficiency of Pteris vittata L. Journal of Hazardous Materials, 421, 126678. https://doi.org/10.1016/j.jhazmat.2021.126678

  • Manzoor, M., Abid, R., Rathinasabapathi, B., De Oliveira, L. M., da Silva, E., Deng, F., Rensing, C., Arshad, M., Gul, I., Xiang, P., & Ma, L. Q. (2019). Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. Science of the Total Environment, 660, 18–24. https://doi.org/10.1016/j.scitotenv.2019.01.013

  • Muazu A. S. (2024). Bacterial population of Pteris vittata with potentials for bioremediation of arsenic rich soils and plant growth promotion [Unpublished Doctoral thesis]. Universiti Sains Malaysia.

  • Nacoon, S., Jogloy, S., Riddech, N., Mongkolthanaruk, W., Kuyper, T. W., & Boonlue, S. (2020). Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Scientific Reports, 10, 4916. https://doi.org/10.1038/s41598-020-61846-x

  • Popov, M., Zemanová, V., Sácký, J., Pavlík, M., Leonhardt, T., Matoušek, T., Kaňa, A., Pavlíková, D., & Kotrba, P. (2021). Arsenic accumulation and speciation in two cultivars of Pteris cretica L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata. Ecotoxicology and Environmental Safety, 216, 112196. https://doi.org/10.1016/j.ecoenv.2021.112196

  • Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W. W., Fallmann, K., & Puschenreiter, M. (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry, 60, 182–194. https://doi.org/10.1016/j.soilbio.2013.01.012

  • Setyawan, H. B., Yulianto, R., Santoso, W. D., & Suryandari, N. (2021). Fern plant (Pteris vittata) as a phytoremediator of arsenic heavy metal and its effect to the growth and quality of Kale (Ipomea reptans Poir). In IOP Conference Series: Earth and Environmental Science (Vol. 637, No. 1, p. 012066). IOP Publishing. https://doi.org/10.1088/1755-1315/637/1/012066

  • Sharma, P. (2021). Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 328, 124835. https://doi.org/10.1016/j.biortech.2021.124835

  • Sharma, P., Tripathi, S., Chaturvedi, P., Chaurasia, D., & Chandra, R. (2021). Newly isolated Bacillus sp. PS-6 assisted phytoremediation of heavy metals using Phragmites communis: Potential application in wastewater treatment. Bioresource Technology, 320(Part B), 124353. https://doi.org/10.1016/j.biortech.2020.124353

  • Tirry, N., Tahri Joutey, N., Sayel, H., Kouchou, A., Bahafid, W., Asri, M., & El Ghachtouli, N. (2018). Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. Journal of Genetic Engineering and Biotechnology, 16(2), 613–619. https://doi.org/10.1016/j.jgeb.2018.06.004

  • Tiwari, S., Sarangi, B. K., & Thul, S. T. (2016). Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application. Journal of Environmental Management, 180, 359–365. https://doi.org/10.1016/j.jenvman.2016.05.029

  • Upadhyay, M. K., Yadav, P., Shukla, A., & Srivastava, S. (2018). Utilizing the potential of microorganisms for managing arsenic contamination: A feasible and sustainable approach. Frontiers in Environmental Science, 6, 24. https://doi.org/10.3389/fenvs.2018.00024

  • Vandana, U. K., Gulzar, A. B. M., Singha, L. P., Bhattacharjee, A., Mazumder, P. B., & Pandey, P. (2020). Hyperaccumulation of arsenic by Pteris vittata, a potential strategy for phytoremediation of arsenic-contaminated soil. Environmental Sustainability, 3, 169–178. https://doi.org/10.1007/s42398-020-00106-0

  • Wang, J., Zhao, F. J., Meharg, A. A., Raab, A., Feldmann, J., & Mcgrath, S. P. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130(3), 1552-1561. https://doi.org/10.1104/pp.008185

  • Wang, Q., Ma, L., Zhou, Q., Chen, B., Zhang, X., Wu, Y., Pan, F., Huang, L., Yang, X., & Feng, Y. (2019). Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere, 234, 769–776. https://doi.org/10.1016/j.chemosphere.2019.06.132

  • Wang, Q., Xiong, D., Zhao, P., Yu, X., Tu, B., & Wang, G. (2011). Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. Journal of Applied Microbiology, 111(5), 1065–1074. https://doi.org/10.1111/j.1365-2672.2011.05142.x

  • Wang, Q., Zhang, W.-J., He, L.-Y., & Sheng, X.-F. (2018). Increased biomass and quality and reduced heavy metal accumulation of edible tissues of vegetables in the presence of Cd-tolerant and immobilizing Bacillus megaterium H3. Ecotoxicology and Environmental Safety, 148, 269–274. https://doi.org/10.1016/j.ecoenv.2017.10.036

  • Xu, J.-Y., Han, Y.-H., Chen, Y., Zhu, L.-J., & Ma, L. Q. (2016). Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. Chemosphere, 144, 1233–1240. https://doi.org/10.1016/j.chemosphere.2015.09.102

  • Yan, H., Gao, Y., Wu, L., Wang, L., Zhang, T., Dai, C., Xu, W., Feng, L., Ma, M., Zhu, Y.-G., & He, Z. (2019). Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. Journal of Hazardous Materials, 368, 386–396. https://doi.org/10.1016/j.jhazmat.2019.01.072

  • Yang, C., Han, N., Inoue, C., Yang, Y.-L., Nojiri, H., Ho, Y.-N., & Chien, M.-F. (2022). Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata. Journal of Hazardous Materials, 434, 128870. https://doi.org/10.1016/j.jhazmat.2022.128870