Home / Regular Issue / JST Vol. 29 (1) Jan. 2021 / JST-2041-2020

 

Former and Current Trend in Subsurface Irrigation Systems

Yasir Layth Alrubaye and Badronnisa Yusuf

Pertanika Journal of Science & Technology, Volume 29, Issue 1, January 2021

DOI: https://doi.org/10.47836/pjst.29.1.01

Keywords: Irrigation Systems, sub-Irrigation, subsurface irrigation, water movement in soil, wetting patterns

Published on: 22 January 2021

The main purpose of this review is to find the diversity in research studies of subsurface irrigation systems in the past two decades. Two periods of five years were selected to reflect the research studies at the beginning and the end of the comparing periods range. A statistical sorting was used to investigate the distribution of papers according to objectives, types of irrigation systems, research methods, and limitations of the studies. Results showed that the measurements and evaluations were the most presented objectives of the selected papers for both periods. Furthermore, almost 90 percent of the recent papers used multiple research methods, unlike the papers published in the former period which only 56 percent of them used multiple methods. Also, more than 90 percent of the recent papers used a single irrigation system. In conclusion, knowledge of subsurface irrigation systems had been advanced in the former studies mostly by analyzing the measurements and evaluations of the traditional irrigation systems. Unlike the former period, the advancement in knowledge has been produced in the current period by introducing new subsurface irrigation systems and more concentration by the order of measurements, evaluation, and designing, respectively.

  • Abid, H. N., & Abid, M. B. (2019). Predicting wetting patterns in soil from a single subsurface drip irrigation system. Journal of Engineering, 25(9), 41-53.

  • Adams, W. R., & Zeleke, K. T. (2017). Diurnal effects on the efficiency of drip irrigation. Irrigation Science, 35(2), 141-157. doi: 10.1007/s00271-016-0529-1

  • Alazba, A. (1999). Dimensionless advance curves for infiltration families. Agricultural Water Management, 41(2), 115-131. Doi: https://doi.org/10.1016/S0378-3774(98)00113-9

  • Al-Ghobari, H. M., & Dewidar, A. Z. (2018). Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agricultural Water Management, 209, 55-61. doi: https://doi.org/10.1016/j.agwat.2018.07.010

  • Ali, S., & Ghosh, N. C. (2015). Methodology for the estimation of wetting front length and potential recharge under variable depth of ponding. Journal of Irrigation and Drainage Engineering, 142(1), 04015027. doi: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000921

  • Amali, S., Rolston, D., Fulton, A., Hanson, B., Phene, C., & Oster, J. (1997). Soil water variability under subsurface drip and furrow irrigation. Irrigation Science, 17(4), 151-155. doi: https://doi.org/10.1007/ s002710050033

  • Andreu, L., Hopmans, J. W., & Schwankl, L. (1997). Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree. Agricultural Water Management, 35(1-2), 123-146. doi: https://doi. org/10.1016/S0378-3774(97)00018-8

  • Ayars, J., Fulton, A., & Taylor, B. (2015). Subsurface drip irrigation in California - Here to stay? Agricultural Water Management, 157, 39-47. doi: https://doi.org/10.1016/j.agwat.2015.01.001

  • Ayars, J., Phene, C., Hutmacher, R., Davis, K., Schoneman, R., Vail, S., & Mead, R. (1999). Subsurface drip irrigation of row crops: a review of 15 years of research at the water management research laboratory. Agricultural Water Management, 42(1), 1-27. doi: https://doi.org/10.1016/S0378-3774(99)00025-6

  • Azhar, M. A., Nashriyah, M., Hudzairi, M. H., Moneruzzaman, M. K., Amir, H., Rohaizad, M. M., & Ali, A. (2014). Effects of irrigation frequencies on aerial agro-morphological parameters of Dioscorea hispida dennst. (dioscoreaceae). Journal of Applied Science research, 8(9), 27-37.

  • Barth, H. (1999). Sustainable and effective irrigation through a new subsoil irrigation system (SIS). Agricultural Water Management, 40(2-3), 283-290. doi: https://doi.org/10.1016/S0378-3774(99)00003-7

  • Bastiaanssen, W. G., Allen, R. G., Droogers, P., D’Urso, G., & Steduto, P. (2007). Twenty-five years modeling irrigated and drained soils: State of the art. Agricultural Water Management, 92(3), 111-125. doi: https:// doi.org/10.1016/j.agwat.2007.05.013

  • Batchelor, C., Lovell, C., & Murata, M. (1996). Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens. Agricultural Water Management, 32(1), 37-48. doi: https://doi. org/10.1016/S0378-3774(96)01257-7

  • Burt, C. M., Clemmens, A. J., Strelkoff, T. S., Solomon, K. H., Bliesner, R. D., Hardy, L. A., … & Eisenhauer, D. E. (1997). Irrigation performance measures: efficiency and uniformity. Journal of Irrigation and Drainage Engineering, 123(6), 423-442. doi: https://doi.org/10.1061/(ASCE)0733-9437(1999)125:2(97)

  • Cai, Y., Wu, P., Zhang, L., Zhu, D., Chen, J., Wu, S., & Zhao, X. (2017). Simulation of soil water movement under subsurface irrigation with porous ceramic emitter. Agricultural Water Management, 192, 244-256. doi: https://doi.org/10.1016/j.agwat.2017.07.004

  • Cai, Y., Wu, P., Zhang, L., Zhu, D., Wu, S., Zhao, X., … & Dong, Z. (2018). Prediction of flow characteristics and risk assessment of deep percolation by ceramic emitters in loam. Journal of Hydrology, 566, 901-909. doi: https://doi.org/10.1016/j.jhydrol.2018.07.076

  • Cai, Y., Zhao, X., Wu, P., Zhang, L., Zhu, D., & Chen, J. (2019a). Effect of soil texture on water movement of porous ceramic emitters: A simulation study. Water, 11(1), 1-13. doi: https://doi.org/10.3390/w11010022

  • Cai, Y., Zhao, X., Wu, P., Zhang, L., Zhu, D., Chen, J., & Lin, L. (2019b). Ceramic patch type subsurface drip irrigation line: Construction and hydraulic properties. Biosystems Engineering, 182, 29-37. doi: https:// doi.org/10.1016/j.biosystemseng.2019.03.005

  • Camp, C. (1998). Subsurface drip irrigation: A review. Transactions of the ASAE, 41(5), 1353-1367.

  • Camp, C., Lamm, F., Evans, R., & Phene, C. (2000, November 14-16). Subsurface drip irrigation–Past, present and future. In Proceedings of the 4th Decennial National Irrigation Symposium (pp. 363-372). Phoenix, Arizona.

  • Castanedo, V., Saucedo, H., & Fuentes, C. (2019). Modeling two-dimensional infiltration with constant and time-variable water depth. Water, 11(2), 1-16. doi: https://doi.org/10.3390/w11020371

  • Clemmens, A. J., & Burt, C. M. (1997). Accuracy of irrigation efficiency estimates. Journal of Irrigation and Drainage Engineering, 123(6), 443-453. doi: https://doi.org/10.1061/(ASCE)0733-9437(1997)123:6(443)

  • Coelho, E. F., & Or, D. (1999). Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant and Soil, 206(2), 123-136. doi: 10.1023/a:1004325219804

  • Comparini, E., & Mannucci, P. (1997). Penetration of a wetting front in a porous medium interacting with the flow. Nonlinear Differential Equations and Applications NoDEA, 4(3), 425-438. doi: https://doi. org/10.1007/s000300050023

  • Connell, L. D. (1999). A quasilinear based procedure for saturated/unsaturated water movement in soils. Transport in Porous Media, 36(1), 1-21. doi: 10.1023/a:1006504816562

  • Dale, M., Ekrann, S., Mykkeltveit, J., & Virnovsky, G. (1997). Effective relative permeabilities and capillary pressure for one-dimensional heterogeneous media. Transport in Porous Media, 26(3), 229-260. doi: https://doi.org/10.1023/A:1006536021302

  • Dawood, I. A., & Hamad, S. N. (2016). Movement of irrigation water in soil from a surface emitter. Journal of Engineering, 22(9), 103-114.

  • Ding, Y., Gao, X., Qu, Z., Jia, Y., Hu, M., & Li, C. (2019). Effects of Biochar Application and Irrigation Methods on Soil Temperature in Farmland. Water, 11(3), 1-18. doi: https://doi.org/10.3390/w11030499

  • Elnesr, M., & Alazba, A. (2019). Computational evaluations of HYDRUS simulations of drip irrigation in 2D and 3D domains (ii-subsurface emitters). Computers and Electronics in Agriculture, 163, 189-205. doi: https://doi.org/10.1016/j.compag.2019.03.035

  • Esfandiari, M., & Maheshwari, B. (1997). Application of the optimization method for estimating infiltration characteristics in furrow irrigation and its comparison with other methods. Agricultural Water Management, 34(2), 169-185. doi: https://doi.org/10.1016/S0378-3774(97)00007-3

  • Fan, W., & Li, G. (2018). Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation. IOP Conference Series: Earth and Environmental Science, 121(5), 1-12. doi: https://doi.org/10.1088/1755- 1315/121/5/052042

  • Fan, Y. W., Huang, N., Zhang, J., & Zhao, T. (2018a). Simulation of soil wetting pattern of vertical moistube-irrigation. Water, 10(5), 1-19. doi: https://doi.org/10.3390/w10050601

  • Fan, Y., Huang, N., Gong, J., Shao, X., Zhang, J., & Zhao, T. (2018b). A simplified infiltration model for predicting cumulative infiltration during vertical line source irrigation. Water, 10(1), 1-12. doi: https:// doi.org/10.3390/w10010089

  • Felsot, A., Cone, W., Yu, J., & Ruppert, J. (1998). Distribution of imidacloprid in soil following subsurface drip chemigation. Bulletin of Environmental Contamination and Toxicology, 60(3), 363-370.

  • Feng, G., Zhang, Z., Wan, C., Lu, P., & Bakour, A. (2017). Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agricultural Water Management, 193, 205-213. doi: https://doi.org/10.1016/j.agwat.2017.07.026

  • Fernández-Gálvez, J., Pollacco, J., Lassabatere, L., Angulo-Jaramillo, R., & Carrick, S. (2019). A general beerkan estimation of soil transfer parameters method predicting hydraulic parameters of any unimodal water retention and hydraulic conductivity curves: Application to the kosugi soil hydraulic model without using particle size distribution data. Advances in Water Resources, 129, 118-130. doi: https:// doi.org/10.1016/j.advwatres.2019.05.005

  • Furati, K. M. (1997). Effects of relative permeability history dependence on two-phase flow in porous media. Transport in Porous Media, 28(2), 181-203. doi:10.1023/a:1006556018950

  • Furman, A. (2008). Modeling coupled surface-subsurface flow processes: A review. Vadose Zone Journal, 7(2), 741-756. doi: https://doi.org/10.2136/vzj2007.0065

  • Ghanem, R., & Dham, S. (1998). Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transport in Porous Media, 32(3), 239-262. doi:10.1023/a:1006514109327

  • Ghazouani, H., Rallo, G., Mguidiche, A., Latrech, B., Douh, B., Boujelben, A., & Provenzano, G. (2019). Assessing Hydrus-2D model to investigate the effects of different on-farm irrigation strategies on potato crop under subsurface drip irrigation. Water, 11(3), 1-18. doi: https://doi.org/10.3390/w11030540

  • Grecco, K. L., de Miranda, J. H., Silveira, L. K., & van Genuchten, M. T. (2019). HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane. Agricultural Water Management, 221, 334-347. doi: https://doi.org/10.1016/j.agwat.2019.05.010

  • Gu, J., Yin, G., Huang, P., Guo, J., & Chen, L. (2017). An improved back propagation neural network prediction model for subsurface drip irrigation system. Computers and Electrical Engineering, 60, 58-65. doi: https:// doi.org/10.1016/j.compeleceng.2017.02.016

  • Gunarathna, M., Sakai, K., Nakandakari, T., Kazuro, M., Onodera, T., Kaneshiro, H., … & Wakasugi, K. (2017). Optimized subsurface irrigation system (OPSIS): Beyond traditional subsurface irrigation. Water, 9(8), 1-11. doi: https://doi.org/10.3390/w9080599

  • Gunarathna, M., Sakai, K., Nakandakari, T., Momii, K., Onodera, T., Kaneshiro, H., … & Wakasugi, K. (2018). Optimized subsurface irrigation system: The future of sugarcane irrigation. Water, 10(3), 1-14. doi: https://doi.org/10.3390/w10030314

  • Han, M., Zhao, C., Feng, G., Yan, Y., & Sheng, Y. (2015). Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D. Water, 7(6), 2622-2640. doi: https://doi.org/10.3390/w7062622

  • Hansona, B., Schwankl, L., Schulbach, K., & Pettygrove, G. (1997). A comparison of furrow, surface drip, and subsurface drip irrigation on lettuce yield and applied water. Agricultural Water Management, 33(2-3), 139-157. doi: https://doi.org/10.1016/S0378-3774(96)01289-9

  • Hantush, M. M., & Marino, M. A. (1989). Chance-constrained model for management of stream-aquifer system. Journal of Water Resources Planning and Management, 115(3), 259-277. doi: https://doi.org/10.1061/ (ASCE)0733-9496(1989)115:3(259)

  • Hatiye, S. D., Hari Prasad, K., & Ojha, C. (2018). Deep percolation under irrigated water-intensive crops. Journal of Irrigation and Drainage Engineering, 144(8), 1-13. doi: https://doi.org/10.1061/(ASCE) IR.1943-4774.0001326

  • Hilfer, R., & Øren, P. (1996). Dimensional analysis of pore scale and field scale immiscible displacement. Transport in Porous Media, 22(1), 53-72. doi: https://doi.org/10.1007/BF00974311

  • Honari, M., Ashrafzadeh, A., Khaledian, M., Vazifedoust, M., & Mailhol, J. (2017). Comparison of HYDRUS- 3D soil moisture simulations of subsurface drip irrigation with experimental observations in the south of France. Journal of Irrigation and Drainage Engineering, 143(7), 1-7. doi: https://doi.org/10.1061/ (ASCE)IR.1943-4774.0001188

  • Huang, G., & Loucks, D. P. (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering Systems, 17(2), 95-118. doi: https://doi. org/10.1080/02630250008970277

  • Huang, Y., Huang, G., Liu, D., Zhu, H., & Sun, W. (2012). Simulation-based inexact chance-constrained nonlinear programming for eutrophication management in the Xiangxi Bay of Three Gorges Reservoir. Journal of Environmental Management, 108, 54-65. doi: https://doi.org/10.1016/j.jenvman.2012.04.037

  • Hudzari, R., Noorman, M., Asimi, M., Atar, M., & Nashriyah, M. (2013). Engineering technological in agriculture research and education. Advanced Materials Research, 705, 493-498. doi: https://doi. org/10.4028/www.scientific.net/AMR.705.493

  • Izadi, B., King, B., Westermann, D., & McCann, I. (1996). Modeling transport of bromide in furrow-irrigated field. Journal of Irrigation and Drainage Engineering, 122(2), 90-96. doi: https://doi.org/10.1061/ (ASCE)0733-9437(1996)122:2(90)

  • Jiang, X. J., Chen, C., Zhu, X., Zakari, S., Singh, A. K., Zhang, W., … & Yu, S. (2019). Use of dye infiltration experiments and HYDRUS-3D to interpret preferential flow in soil in a rubber-based agroforestry systems in Xishuangbanna, China. Catena, 178, 120-131. doi: https://doi.org/10.1016/j.catena.2019.03.015

  • Kacimov, A., Obnosov, Y. V., & Šimůnek, J. (2018). Steady flow from an array of subsurface emitters: Kornev’s irrigation technology and Kidder’s free boundary problems revisited. Transport in Porous Media, 121(3), 643-664. doi: https://doi.org/10.1007/s11242-017-0978-x

  • Kandil, H., Skaggs, R., Dayem, S. A., & Aiad, Y. (1995). DRAINMOD-S: Water management model for irrigated arid lands, crop yield and applications. Irrigation and Drainage Systems, 9(3), 239-258. doi: https://doi.org/10.1007/BF00880866

  • Kapoor, V. (1996). Criterion for instability of steady-state unsaturated flows. Transport in Porous Media, 25(3), 313-334. doi: https://doi.org/10.1007/BF00140986

  • Kerkides, P., Poulovassilis, A., Argyrokastritis, I., & Elmaloglou, S. (1997). Comparative evaluation of analytic solutions in predicting soil moisture profiles in vertical one-dimensional infiltration under ponded and constant flux boundary conditions. Water Resources Management, 11(5), 323-338. doi:10.1023/a:1007978714468

  • Khalil, L. A., & Abid, M. B. (2019). Numerical simulation of unsaturated soil water from a trickle irrigation system for sandy loam soils. Journal of Engineering, 25(3), 38-52. doi: https://doi.org/10.31026/j. eng.2019.03.04

  • Kite, G., & Droogers, P. (2000). Comparing evapotranspiration estimates from satellites, hydrological models and field data. Journal of Hydrology, 229(1-2), 3-18. doi: https://doi.org/10.1016/S0022-1694(99)00195-X

  • Lacroix, M., Wang, H., & Blavoux, B. (1996). Water-table modelling to estimate irrigation losses: application to the Lower Durance, France. Agricultural Water Management, 30(3), 283-300. doi: https://doi. org/10.1016/0378-3774(95)01227-3

  • Li, P., Tan, H., Wang, J., Cao, X., & Yang, P. (2019). Evaluation of water uptake and root distribution of cherry trees under different irrigation methods. Water, 11(3), 1-18. doi: https://doi.org/10.3390/w11030495

  • Lima, V., Keitel, C., Sutton, B., & Leslie, G. (2019). Improved water management using subsurface membrane irrigation during cultivation of Phaseolus vulgaris. Agricultural Water Management, 223, 1-11. doi: https:// doi.org/10.1016/j.agwat.2019.105730

  • Liu, Y., Zhou, Y., Wang, T., Pan, J., Zhou, B., Muhammad, T., … & Li, Y. (2019). Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality. Journal of Cleaner Production, 222, 835-843. doi: https://doi.org/10.1016/j.jclepro.2019.02.208

  • Lockington, D., & Parlange, J. Y. (1995). Approximate formulae for the wetting front position and boundary water content during horizontal infiltration. Transport in Porous Media, 18(2), 95-105. doi: https://doi. org/10.1007/BF01064673

  • Loucks, D. P., Stedinger, J. R., & Haith, D. A. (1981). Water resource systems planning and analysis. Englewood Cliffs, New Jersey: Prentice-Hall.

  • Mantoglou, A. (2003). Pumping management of coastal aquifers using analytical models of saltwater intrusion. Water Resources Research, 39(12), 1-12. doi: https://doi.org/10.1029/2002WR001891

  • Martínez de Azagra Paredes, A., & Del Río San José, J. (2019). Pitcher Irrigation: Some Theoretical and Practical Aspects. Irrigation and Drainage, 68(3), 542-550. doi: https://doi.org/10.1002/ird.2330

  • Massatbayev, K., Izbassov, N., Nurabaev, D., Musabekov, K., Shomantayev, A., & Massatbayev, M. (2016). Technology and regime of sugar beet drip irrigation with plastic mulching under the conditions of the jambyl region. Irrigation and Drainage, 65(5), 620-630. doi: https://doi.org/10.1002/ird.2084

  • Matanga, G. B., & Mariño, M. A. (1979). Irrigation planning: 1. Cropping pattern. Water Resources Research, 15(3), 672-678. doi: https://doi.org/10.1029/WR015i003p00672

  • McClymont, D., & Smith, R. (1996). Infiltration parameters from optimisation on furrow irrigation advance data. Irrigation Science, 17(1), 15-22.

  • Meshkat, M., Warner, R. C., & Workman, S. R. (1999). Modeling of evaporation reduction in drip irrigation system. Journal of Irrigation and Drainage Engineering, 125(6), 315-323. doi: https://doi.org/10.1061/ (ASCE)0733-9437(1999)125:6(315)

  • Montazar, A., Zaccaria, D., Bali, K., & Putnam, D. (2017). A model to assess the economic viability of alfalfa production under subsurface drip irrigation in California. Irrigation and Drainage, 66(1), 90-102. doi: https://doi.org/10.1002/ird.2091

  • Naghedifar, S. M., Ziaei, A. N., Playán, E., Zapata, N., Ansari, H., & Hasheminia, S. M. (2019). A 2D curvilinear coupled surface–subsurface flow model for simulation of basin/border irrigation: theory, validation and application. Irrigation Science, 37(2), 151-168. doi: https://doi.org/10.1007/s00271-018-0609-5

  • Oad, R., & Sampath, R. (1995). Performance measure for improving irrigation management. Irrigation and Drainage Systems, 9(4), 357-370.

  • Panda, S., Khepar, S., & Kaushal, M. (1996). Interseasonal irrigation system planning for waterlogged sodic soils. Journal of Irrigation and Drainage Engineering, 122(3), 135-144. doi: https://doi.org/10.1061/ (ASCE)0733-9437(1996)122:3(135)

  • Parlange, J. Y., Hogarth, W., Parlange, M., Haverkamp, R., Barry, D. A., Ross, P., & Steenhuis, T. (1998). Approximate analytical solution of the nonlinear diffusion equation for arbitrary boundary conditions. Transport in Porous Media, 30(1), 45-55. doi: https://doi.org/10.1023/A:1006508721609

  • Parseval, Y. D., Pillai, K. M., & Advani, S. G. (1997). A simple model for the variation of permeability due to partial saturation in dual scale porous media. Transport in Porous Media, 27(3), 243-264. doi:10.1023/a:1006544107324

  • Qiu, Z., Li, J., & Zhao, W. (2017). Effect of applying sewage effluent with subsurface drip irrigation on soil enzyme activities during the maize growing season. Irrigation and Drainage, 66(5), 723-737. doi: https:// doi.org/10.1002/ird.2124

  • Razali, M. H., Roslan, S., Halim, A. S. M. A., Shokeri, A. F. M., & Husin, N. A. (2016). Design and Development of Innovative Highland Water Filtration System. World Journal of Engineering and Technology, 4(3), 383-390. doi: 10.4236/wjet.2016.43037

  • Ren, C., Zhao, Y., Dan, B., Wang, J., Gong, J., & He, G. (2018). Lateral hydraulic performance of subsurface drip irrigation based on spatial variability of soil: Experiment. Agricultural Water Management, 204, 118-125. doi: https://doi.org/10.1016/j.agwat.2018.03.034

  • Ren, C., Zhao, Y., Wang, J., Bai, D., Zhao, X., & Tian, J. (2017). Lateral hydraulic performance of subsurface drip irrigation based on spatial variability of soil: Simulation. Agricultural Water Management, 193, 232-239. doi: https://doi.org/10.1016/j.agwat.2017.08.014

  • Reyes-Esteves, R. G., & Slack, D. C. (2019). Modeling approaches for determining appropriate depth of subsurface drip irrigation tubing in alfalfa. Journal of Irrigation and Drainage Engineering, 145(10), 1-7. doi: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001409

  • Rimmer, A., Parlange, J. Y., Steenhuis, T. S., Darnault, C., & Condit, W. (1996). Wetting and nonwetting fluid displacements in porous media. Transport in Porous Media, 25(2), 205-215. doi: https://doi.org/10.1007/ BF00135856

  • Ross, P., Haverkamp, R., & Parlange, J. Y. (1996). Calculating parameters for infiltration equations from soil hydraulic functions. Transport in Porous Media, 24(3), 315-339. doi: https://doi.org/10.1007/BF00154096

  • Ross, P., Parlange, J. Y., & Haverkamp, R. (1995). Two-dimensional interaction of a wetting front with an impervious layer: Analytical and numerical solutions. Transport in Porous Media, 20(3), 251-263. doi: https://doi.org/10.1007/BF01073175

  • Rudnick, D., Irmak, S., West, C., Chávez, J., Kisekka, I., Marek, T., … & Djaman, K. (2019). Deficit irrigation management of maize in the High Plains Aquifer Region: A review. JAWRA Journal of the American Water Resources Association, 55(1), 38-55. doi: https://doi.org/10.1111/1752-1688.12723

  • Saefuddin, R., Saito, H., & Šimůnek, J. (2019). Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation. Agricultural Water Management, 211, 111-122. doi: https://doi.org/10.1016/j. agwat.2018.09.039

  • Sakaguchi, A., Yanai, Y., & Sasaki, H. (2019). Subsurface irrigation system design for vegetable production using HYDRUS-2D. Agricultural Water Management, 219, 12-18. doi: https://doi.org/10.1016/j. agwat.2019.04.003

  • Scaloppi, E. J., Merkley, G. P., & Willardson, L. S. (1995). Intake parameters from advance and wetting phases of surface irrigation. Journal of Irrigation and Drainage Engineering, 121(1), 57-70. doi: https://doi. org/10.1061/(ASCE)0733-9437(1995)121:1(57)

  • Shani, U., Xue, S., Gordin-Katz, R., & Warrick, A. (1996). Soil-limiting flow from subsurface emitters. I: Pressure measurements. Journal of Irrigation and Drainage Engineering, 122(5), 291-295. doi: https:// doi.org/10.1061/(ASCE)0733-9437(1996)122:5(291)

  • Singh, A. (2013). Groundwater modelling for the assessment of water management alternatives. Journal of Hydrology, 481, 220-229. doi: https://doi.org/10.1016/j.jhydrol.2012.12.042

  • Singh, A. (2014a). Irrigation planning and management through optimization modelling. Water Resources Management, 28(1), 1-14. doi: https://doi.org/10.1007/s11269-013-0469-y

  • Singh, A. (2014b). Optimizing the use of land and water resources for maximizing farm income by mitigating the hydrological imbalances. Journal of Hydrologic Engineering, 19(7), 1447-1451. doi: https://doi. org/10.1061/(ASCE)HE.1943-5584.0000924

  • Singh, A. (2014c). Simulation–optimization modeling for conjunctive water use management. Agricultural Water Management, 141, 23-29. doi: https://doi.org/10.1016/j.agwat.2014.04.003

  • Singh, B., Boivin, J., Kirkpatrick, G., & Hum, B. (1995). Automatic irrigation scheduling system (AISSUM): Principles and applications. Journal of Irrigation and Drainage Engineering, 121(1), 43-56. doi: https:// doi.org/10.1061/(ASCE)0733-9437(1995)121:1(43)

  • Snyder, R., Plas, M., & Grieshop, J. (1996). Irrigation methods used in California: Grower survey. Journal of Irrigation and Drainage Engineering, 122(4), 259-262. doi: https://doi.org/10.1061/(ASCE)0733- 9437(1996)122:4(259)

  • Soulis, K. X., & Elmaloglou, S. (2016). Optimum soil water content sensors placement in drip irrigation scheduling systems: Concept of time stable representative positions. Journal of Irrigation and Drainage Engineering, 142(11), 1-9. doi: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001093

  • Tabari, M. M. R., & Soltani, J. (2013). Multi-objective optimal model for conjunctive use management using SGAs and NSGA-II models. Water Resources Management, 27(1), 37-53. doi: https://doi.org/10.1007/ s11269-012-0153-7

  • Valiantzas, J. D. (1997). Surface irrigation advance equation: Variation of subsurface shape factor. Journal of Irrigation and Drainage Engineering, 123(4), 300-306. doi: 10.1061/(ASCE)0733-9437(1997)123:4(300)

  • Varshney, R. S. (1995). Modern methods of irrigation. GeoJournal, 35(1), 59-63.

  • Warrick, A., & Shani, U. (1996). Soil-limiting flow from subsurface emitters. II: Effect on uniformity. Journal of Irrigation and Drainage Engineering, 122(5), 296-300. doi: https://doi.org/10.1061/(ASCE)0733- 9437(1996)122:5(296)

  • Willis, T. M., Black, A. S., & Meyer, W. S. (1997). Estimates of deep percolation beneath cotton in the Macquarie Valley. Irrigation Science, 17(4), 141-150. doi: https://doi.org/10.1007/s002710050032

  • Witelski, T. P. (1997). Perturbation analysis for wetting fronts in Richard’s Equation. Transport in Porous Media, 27(2), 121-134. doi: https://doi.org/10.1023/A:1006513009125

  • Zhang, H., Liu, H., Sun, C., Gao, Y., Gong, X., Sun, J., & Wang, W. (2017). Root development of transplanted cotton and simulation of soil water movement under different irrigation methods. Water, 9(7), 1-21. doi: https://doi.org/10.3390/w9070503

  • Zheng, C., Lu, Y., Guo, X., Li, H., Sai, J., & Liu, X. (2017). Application of HYDRUS-1D model for research on irrigation infiltration characteristics in arid oasis of northwest China. Environmental Earth Sciences, 76(23), 785-795. doi: https://doi.org/10.1007/s12665-017-7151-2

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-2041-2020

Download Full Article PDF

Share this article

Related Articles