Home / Regular Issue / JST Vol. 29 (1) Jan. 2021 / JST-2174-2020

 

Differentiation Unclean and Cleaned Edible Bird's Nest using Multivariate Analysis of Amino Acid Composition Data

Nurul Alia Azmi, Ting Hun Lee, Chia Hau Lee, Norfadilah Hamdan and Kian Kai Cheng

Pertanika Journal of Science & Technology, Volume 29, Issue 1, January 2021

DOI: https://doi.org/10.47836/pjst.29.1.36

Keywords: Cleaning process, edible bird's nest (EBN), orthogonal partial least square discriminant analysis (OPLS-DA)

Published on: 22 January 2021

Edible Bird's Nest (EBN) has been used as a health modulator for many centuries. Nutrient degradation in EBN always happen during cleaning process due to many factors such as temperature and long soaking time in water. The present study attempts to find the difference between unclean and cleaned EBN in their amino acid composition. A total of 65 EBN samples were collected directly from swiftlet premises in 13 states of Malaysia to ensure the coverage of geographical location differences. A standardized cleaning method had been adapted from the industry to clean the collected EBN sample in the lab. Then it was analysed for amino acids composition. After that OPLS-DA multivariate model was used to discriminate the unclean and cleaned EBN on 18 types of amino acids composition. The model was robust with classification and predictive ability of 76.1% and 64.5%, respectively. The model was further validated with sample blind test and 100% of the sample was accurately fall into their respective cluster, unclean and cleaned EBN. The findings suggest that three major amino acids with the highest VIP value were Aspartic acid, Methionine and Glutamic acid and proposed as the marker for discriminating the unclean and cleaned EBN.

  • Abidin, F. Z., Hui, C. K., Luan, N. S., Ramli, E. S. M., Hun, L. T., & Ghafar, N. A. (2011). Effects of edible bird’s nest (EBN) on cultured rabbit corneal keratocytes. BMC Complementary and Alternative Medicine, 11(1), 1-10. doi: https://doi.org/10.1186/1472-6882-11-94

  • Ali, A. A. M., Noor, H. S. M., Chong, P., Babji, A. S., & Lim, S. (2019). Comparison of amino acids profile and antioxidant activities between edible bird nest and chicken egg. Malaysian Applied Biology, 48(2), 63-66.

  • Aluko, R. (2018). Food protein-derived peptides: Production, isolation, and purification. In Proteins in Food Processing (2nd Ed., pp. 389-412). Amsterdam, Netherlands: Woodhead Publishing. doi: https://doi.org/10.1016/B978-0-08-100722-8.00016-4

  • Beauclercq, S., Lefèvre, A., Montigny, F., Collin, A., Tesseraud, S., Leterrier, C., … & Guilloteau, L. A. (2019). A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: A pilot study. Journal of Animal Science and Biotechnology, 10(1), 1-12. doi: https://doi.org/10.1186/s40104-019-0335-8

  • Blasco, Błaszczyński, J., Billaut, J. C., Nadal-Desbarats, L., Pradat, P. F., Devos, D., … & Corcia, P. (2015). Comparative analysis of targeted metabolomics: Dominance-based rough set approach versus orthogonal partial least square-discriminant analysis. Journal of Biomedical Informatics, 53, 291-299. doi: https://doi.org/10.1016/j.jbi.2014.12.001

  • Cavanna, D., Zanardi, S., Dall’Asta, C., & Suman, M. (2019). Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chemistry, 271, 691-696. doi: https://doi.org/10.1016/j.foodchem.2018.07.204

  • Chua, Y. G., Chan, S. H., Bloodworth, B. C., Li, S. F. Y., & Leong, L. P. (2015). Identification of edible bird’s nest with amino acid and monosaccharide analysis. Journal of Agricultural and Food Chemistry, 63(1), 279-289. doi: https://doi.org/10.1021/jf503157n

  • Chua, K. H., Lee, T. H., Nagandran, K., Yahaya, N. H. M., Lee, C. T., Tjih, E. T. T., & Aziz, R. A. (2013). Edible bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: In vitro study. BMC Complementary and Alternative Medicine, 13(1), 1-9. doi: https://doi.org/10.1186/1472-6882-13-19

  • Chua, L. S., & Zukefli, S. N. (2016). A comprehensive review of edible bird nests and swiftlet farming. Journal of Integrative Medicine, 14(6), 415-428. doi: https://doi.org/10.1016/S2095-4964(16)60282-0

  • Del, C. C. P., Garde-Cerdán, T., Sánchez, A. M., Maggi, L., Carmona, M., & Alonso, G. L. (2009). Determination of free amino acids and ammonium ion in saffron (Crocus sativus L.) from different geographical origins. Food Chemistry, 114(4), 1542-1548. doi: https://doi.org/10.1016/j.foodchem.2008.11.034

  • Erik, V. D., Hoogeveen, A., & Abeln, S. (2015). The hydrophobic temperature dependence of amino acids directly calculated from protein structures. PLoS Computational Biology, 11(5), 1-17. doi: https://doi.org/10.1371/journal.pcbi.1004277

  • Halimi, N. M., Kasim, Z. M., & Babji, A. S. (2014). Nutritional composition and solubility of edible bird nest (Aerodramus fuchiphagus). In AIP Conference Proceedings (Vol. 1614, No. 1, pp. 476-481). New York, USA: AIP Publishing LLC.

  • Hun, L. T., Lee, C. H., Azmi, N. A., Kavita, S., Wong, S., Znati, M., & Jannet, H. B. (2020). Characterization of polar and non‐polar compounds of house edible bird’s nest (EBN) from Johor, Malaysia. Chemistry and Biodiversity, 17(1), 1-10. doi: https://doi.org/10.1002/cbdv.201900419

  • Hun, L. T., Wani, W. A., Tjih, E. T. T., Adnan, N. A., Ling, Y. L., & Aziz, R. A. (2015). Investigations into the physicochemical, biochemical and antibacterial properties of edible bird’s nest. Journal of Chemical and Pharmaceutical Research, 7(7), 228-247.

  • Khaleduzzaman, A., Khandaker, Z., Khan, M., Banu, L., & Khan, M. (2008). Evaluation of a high performance liquid chromolography (Hplc) mehtod for amino acid analysis in feed with precolumn derivatization and fluorescence detection. Bangladesh Journal of Animal Science, 37(2), 66-73. doi: https://doi.org/10.3329/bjas.v37i2.9883

  • Li, Y., & Wu, Y. L. (2010). A golden phoenix arising from the herbal nest-A review and reflection on the study of antimalarial drug Qinghaosu. Frontiers of Chemistry in China, 5(4), 357-422. doi: https://doi.org/10.1007/s11458-010-0214-5

  • Lim, C. (2007). Make millions from swiftlet farming: A definitive guide. Kuala Lumpur, Malaysia: True Wealth.

  • Lukman, W., & Wibawan, I. W. T. (2018). Protein profile of edible bird’s nest origin Kalimantan and Java Islands Indonesia. Journal of Agriculture and Veterinary Sciences, 11(5), 69-73. doi: 10.9790/2380-1105026973

  • Marcone, M. F. (2005). Characterization of the edible bird’s nest the “Caviar of the East”. Food Research International, 38(10), 1125-1134. doi: https://doi.org/10.1016/j.foodres.2005.02.008

  • Mauer, L. (2003). Heat treatment for food proteins. In Protein (pp. 4868-4872). Amsterdam, Netherland: Woodhead Publishing.

  • Norhayati, M. K., Azman, O., & Nazaimoon, W. M. (2010). Preliminary study of the nutritional content of Malaysian edible bird’s nest. Malaysian Journal of Nutrition, 16(3), 389-396.

  • Oda, M., Ohta, S., Suga, T., & Aoki, T. (1998). Study on food components: The structure of N-linked asialo carbohydrate from the edible bird’s nest built by Collocalia fuciphaga. Journal of Agricultural and Food Chemistry, 46(8), 3047-3053. doi: https://doi.org/10.1021/jf980094k

  • Phua, L. C., Chue, X. P., Koh, P. K., Cheah, P. Y., Ho, H. K., & Chan, E. C. Y. (2014). Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biology and Therapy, 15(4), 389-397. doi: https://doi.org/10.4161/cbt.27625

  • Quek, M. C., Chin, N. L., Yusof, Y. A., Law, C. L., & Tan, S. W. (2018). Pattern recognition analysis on nutritional profile and chemical composition of edible bird’s nest for its origin and authentication. International Journal of Food Properties, 21(1), 1680-1696. doi: https://doi.org/10.1080/10942912.2018.1503303

  • Reverter, M., Lundh, T., & Lindberg, J. E. (1997). Determination of free amino acids in pig plasma by precolumn derivatization with 6-N-aminoquinolyl-N-hydroxysuccinimidyl carbamate and high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 696(1), 1-8. doi: https://doi.org/10.1016/S0378-4347(97)00217-X

  • Saengkrajang, W., Matan, N., & Matan, N. (2013). Nutritional composition of the farmed edible bird’s nest (Collocalia fuciphaga) in Thailand. Journal of Food Composition and Analysis, 31(1), 41-45. doi: https://doi.org/10.1016/j.jfca.2013.05.001

  • Senizza, B., Rocchetti, G., Ghisoni, S., Busconi, M., De Los Mozos Pascual, M., Fernandez, J. A., … & Trevisan, M. (2019). Identification of phenolic markers for saffron authenticity and origin: An untargeted metabolomics approach. Food Research International, 126(2019), 1-7. doi: https://doi.org/10.1016/j.foodres.2019.108584

  • Seow, E. K., Ibrahim, B., Muhammad, S. A., Lee, L. H., & Cheng, L. H. (2016a). Differentiation between house and cave edible bird’s nests by chemometric analysis of amino acid composition data. Lebensmittel-Wissenschaft and Technologie - Food Science and Technology, 65, 428-435. doi: https://doi.org/10.1016/j.lwt.2015.08.047

  • Seow, E. K., Ibrahim, B., Muhammad, S. A., Lee, L. H., Lalung, J., & Cheng, L. H. (2016b). Discrimination between cave and house-farmed edible bird’s nest based on major mineral profiles. Pertanika Journal of Tropical Agricultural Science, 39(2), 181-195.

  • Shim, E. K., Chandra, G. F., Pedireddy, S., & Lee, S. Y. (2016). Characterization of swiftlet edible bird’s nest, a mucin glycoprotein, and its adulterants by Raman Microspectroscopy. Journal of Food Science and Technology, 53(9), 3602-3608. doi: https://doi.org/10.1007/s13197-016-2344-3

  • Song, H. H., Kim, D. Y., Woo, S., Lee, H. K., & Oh, S. R. (2013). An approach for simultaneous determination for geographical origins of Korean Panax ginseng by UPLC-QTOF/MS coupled with OPLS-DA models. Journal of Ginseng Research, 37(3), 341-348. doi: 10.5142/jgr.2013.37.341

  • Su, S. C., Yu, P. C., Liu, C. H., Shiau, H. W., Lee, S. C., & Chou, S. S. (1998). Application of capillary electrophoresis for identification of the authenticity of bird’s nests. Journal of Food and Drug Analysis, 6(1), 455-464.

  • Tripathy, D. B., Mishra, A., Clark, J., & Farmer, T. (2018). Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review. Comptes Rendus Chimie, 21(2), 112-130. doi: https://doi.org/10.1016/j.crci.2017.11.005

  • Tulbek, M., Lam, R., Asavajaru, P., & Lam, A. (2017). Pea: A sustainable vegetable protein crop. In Sustainable Protein Sources (pp. 145-164). Amsterdam, Netherland: Woodhead Publishing. doi: https://doi.org/10.1016/B978-0-12-802778-3.00009-3

  • Wong, R. S. (2013). Edible bird’s nest: Food or medicine. Chinese Journal of Integrative Medicine, 19(9), 643-649. doi: https://doi.org/10.1007/s11655-013-1563-y

  • Yida, Z., Imam, M. U., Ismail, M., Ooi, D. J., Sarega, N., Azmi, N. H., … & Yusuf, N. B. (2015). Edible bird’s nest prevents high fat diet-induced insulin resistance in rats. Journal of Diabetes Research, 2015, 1-11. doi: https://doi.org/10.1155/2015/760535

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2174-2020

Download Full Article PDF

Share this article

Recent Articles