e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 29 (3) Jul. 2021 / JST-2197-2020


Efficient Solid Waste Management in Prai Industrial Area through GIS using Dijkstra and Travelling Salesman Problem Algorithms

Gaeithry Manoharam, Mohd. Tahir Ismail, Ismail Ahmad Abir and Majid Khan Majahar Ali

Pertanika Journal of Science & Technology, Volume 29, Issue 3, July 2021


Keywords: Carbon emission, Dijkstra’s algorithm, geographic information system, solid waste management, transportation

Published on: 31 July 2021

The fourth industrial revolution (IR 4.0) supports new solid waste management and effective routing system for collection and transport of solid wastes, especially in achieving Penang 2030 vision to become a pollution free smart city. This study will enhance Seberang Perai Municipal Council (MBSP) solid waste routing system in Prai industrial area by implementing Dijkstra and Travelling Salesman Problem (TSP) algorithms using Geographic Information System version 10.1. The route optimization study involved 24 companies in Phase I, Phase II, and Phase IV of Prai industrial area. The authority is currently using only one route to transfer the waste-to-waste transfer station. The Dijkstra algorithm can optimize alternative route 1 distance by 19.74% whereby alternative route 2 ended up with extra distance by 3.73% compared to existing single route used by MBSP. The forward Dijkstra algorithm involves single direction route with cleaning depot (source) as starting point and waste transfer station (destination) as ending point. TSP algorithm is having advantage with return direction route. The alternative route 1 evaluated through TSP algorithm gave shorter distance by 6.61% compared to existing route. Alternative route 1 evaluated through Dijkstra algorithm is potential to save fuel cost by 19.75%. Existing route carries 9.2% per year of transportation carbon emission level. The alternative route 1 assessed through Dijkstra and TSP algorithms reported lower carbon emission level at 7.4% per year and 8.6% per year, respectively. Findings of this study can help in improving MBSP’s routing system and realize Penang 2030 vision.

  • Ahmad, F. I. (2016). Sustainable solutions for domestic solid waste management in Qatar (MSc Thesis). Qatar University, Doha, Qatar.

  • Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Pearson Prentice Hall.

  • Anghinolfi, D., Paolucci, M., Robba, M., & Taramasso, A. C. (2013). A dynamic optimization model for solid waste recycling. Waste Management, 33(2), 287-296.

  • Beijoco, F., Semiao, V., & Zsigraiova, Z. (2011). Optimization of a municipal solid waste collection and transportation system. Journal of Waste Management, 4(33) 793-806.

  • Bhambulkar, A. V. (2011). Municipal solid waste collection routes optimized with arc GIS network analyst. International Journal of Advanced Engineering Sciences and Technologies, 11(1), 202-207.

  • Bodin, L. (1983). Solving large vehicle routing and scheduling problems in small core. In Proceedings of the 1983 annual conference on Computers: Extending the human resource (pp. 27-37). Association for Computing Machinery.

  • Bonomo, F., Durán, G., Larumbe, F., & Marenco, J. (2012). A method for optimizing waste collection using mathematical programming: A Buenos Aires case study. Waste Management & Research, 30(3), 311-324.

  • Bovwe, O., Nwaogazie, I. L., & Agunwamba, J. C. (2016). Development of ant colony optimization software as a solid waste management system. Current Journal of Applied Science and Technology, 15(5), 1-19.

  • Chipumuro, M., Mawonike, R., & Makoni, T. (2014). Optimizing routing of residential solid waste collection: Case study of Chikova residential area in Zimbabwe. International Research Journal of Mathematics, Engineering & IT, 1(3), 23-40.

  • Ghadimzadeh, A., Makmom, A. A., Hosea, M. K., Asgari, N., Shamsipour, R., Askari, A., & Narany, T. S. (2015). Review on CO2 Emission from Transportation Sector in Malaysia. IOSR Journal of Environmental Science, Toxicology and Food Technology, 9(5), 61-70.

  • Ghose, M., Dikshit, A., & Sharma, S. (2006). A GIS based transportation model for solid waste disposal - A case study on Asansol municipality. Journal of Waste Management, 26(11), 1287-1293.

  • Gutin, G., & Punnen, A. P. (2002). Traveling salesman problem and its variations. Kluwer Academic Publishers.

  • Hoffman, K. L., Padberg, M., & Rinaldi, G. (2013). Traveling salesman problem. Encyclopedia of operations research and management science, 1, 1573-1578.

  • Kalle, A., Mohamed, M. S., & Moncef, Z., (2016). Using GIS-based tools for the optimization of solid waste collection and transport: Case study of Sfax City, Tunisia. Journal of Engineering, 2016, Article 4596849.

  • Kinobe, J., Bosona, T., Gebresenbet, G., & Niwag, C. (2015). Optimization of waste collection and disposal in Kampala city. Journal of Habitat International, 49, 126-137.

  • Kumpulan Utusan. (2017). Utusan Melayu (M) Berhad. Retrieved January 24, 2018, from

  • Menikpura, N., & Sang-Arun, J. (2013). User manual estimation tool for greenhouse gas (GHG) emissions from municipal solid waste (MSW) management in a life cycle perspective. Institute for Global Environmental Strategies.

  • National Solid Waste Management Department. (2013). Survey on solid waste composition, characteristics & existing practice of solid waste recycling in Malaysia. Retrieved December 13, 2018, from

  • Nguyen-Trong, K., Nguyen-Thi-Ngoc, A., Nguyen-Ngoc, D., & Dinh-Thi-Hai, V., (2017). Optimization of municipal solid waste transportation by integrating GIS analysis, equation-based, and agent-based model. Journal of Waste Management, 59, 14-22.

  • Penang State Government. (2016). Official portal Penang state government. Retrieved August 23, 2018, from

  • Omran, A., El-Amrouni, A. O., Suliman, L. K., Pakir, A. H., Ramli, M., & Aziz, H. A. (2009). Solid waste management practices in Penang State: A review of current practices and the way forward. Environmental Engineering & Management Journal (EEMJ), 8(1), 97-106.

  • Patel, M. H., Padhya, P. H., & Zaveri, P. P. (2016). GIS based route optimization for solid waste management: A case study of Surat City. International Journal for Scientific Research & Development, 4(04), 32-34.

  • Shamshiry, E., Nadi, B., & Mahmud, A. R. (2011). Optimization of municipal waste management. International Proceedings of Chemical, Biological and Environmental Engineering, 1(1), 119-121.

  • Singh, G., Singh, B., Rathi, S., & Haris, S. (2014). Solid waste management using shortest path algorithm. International Journal of Engineering Science Invention Research & Development, 1(2), 60-64.

  • Stewart, L. A. (2005, July 25-29). The application of route network analysis to commercial forestry transportation. In Proceedings of 2005 ESRI International User Conference. San Diego, USA.

  • Tavares, G., Zsigraiova, Z., Semiao, V., & Carvalho, M. D. G. (2008). A case study of fuel savings through optimization of MSW transportation routes. Management of Environmental Quality: An International Journal, 19(4), 444-454.

  • Williams, R. (2012). Globalization and waste management. International Solid Waste Management, Singapore.

  • Zam, D., Jamtsho, S., Dema, T., & Wangmo, J. C. C., (2007). Optimization of solid waste collection and transportation route in Phuentsholing city using GIS. Journal of Academia, 1-8.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Recent Articles