Home / Regular Issue / JST Vol. 30 (1) Jan. 2022 / JST-2640-2021

 

Performance of a HAWT Rotor with a Modified Blade Configuration

Tabrej Khan, Balbir Singh, Mohamed Thariq Hameed Sultan and Kamarul Arifin Ahmad

Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022

DOI: https://doi.org/10.47836/pjst.30.1.11

Keywords: Aerodynamics, computational fluid dynamics, pitch angle, turbine blade, wind energy, wind speed

Published on: 10 January 2022

As the world focuses more on clean and green Earth, wind energy plays a significant role. Wind energy is a renewable source of energy that can cope with the ongoing global fossil fuel crisis. The wind energy converters like wind turbines have been studied a lot in terms of design and performance. The current work includes analyzing the output effects of a horizontal axis wind turbine (HAWT) with a modified blade configuration at specific wind speeds. A numerical investigation is carried out using two different numerical software on the chosen airfoil used in blade design validated with the analysis carried out in open-loop wind tunnels. The study is divided into two phases: first, the selected airfoil is tested experimentally and using CFD, and then the findings are compared to those of the University of Illinois Urbana Champaign wind tunnel tests at low Reynolds numbers. The second phase includes the numerical analysis based on the blade element momentum method and non-linear lifting line simulations of modified blade design at high Reynolds number. The numerical results of rotor performance analysis have been compared to existing experimental results. The findings of all numerical investigations agree with those of the experiments. An optimal value of the power coefficient is obtained at a particular tip speed ratio close to the desired value for large wind turbines. For maximum power, this study investigates the optimum pitch angle. The work demonstrated the improved HAWT rotor blade design to produce better aerodynamic lift and thus improve performance.

  • Akansu, S. O., Dagdevir, T., & Kahraman, N. (2017). Numerical investigation of the effect of blade airfoils on a vertical axis wind turbine. Isi Bilimi Ve Teknigi Dergisi/ Journal of Thermal Science and Technology, 37(1), 115-125.

  • Albuquerque, I., & Matos, F. (2016). A characterization of vertical axis wind turbines. IEEE Latin America Transactions, 14(10), 4255-4260. https://doi.org/10.1109/tla.2016.7786302

  • Barrett, R., & Ning, A. (2016). Comparison of airfoil precomputational analysis methods for optimization of wind turbine blades. IEEE Transactions on Sustainable Energy, 7(3), 1081-1088. https://doi.org/10.1109/tste.2016.2522381

  • Farhan, A., Hassanpour, A., Burns, A., & Motlagh, Y. G. (2019). Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance. Renewable Energy, 131, 1255-1273. https://doi.org/10.1016/j.renene.2018.08.017

  • Hafeez, N., Badshah, S., Badshah, M., & Khalil, S. J. (2019). Effect of velocity shear on the performance and structural response of a small-scale horizontal axis tidal turbine. Marine Systems & Ocean Technology, 14(2-3), 51-58. https://doi.org/10.1007/s40868-019-00057-0

  • Jin, J. Y., Virk, M. S., Hu, Q., & Jiang, X. (2020). Study of ice accretion on horizontal axis wind turbine blade using 2D and 3D numerical approach. IEEE Access, 8, 166236-166245. https://doi.org/10.1109/access.2020.3022458

  • Kim, S. H., & Suh, K. (2019). Experimental and numerical investigation on power characteristics of 300 W class horizontal axis wind turbine with wave winding type AFPM generator. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(4), 837-848. https://doi.org/10.1007/s40684-019-00160-y

  • Kumar, P. M., Seo, J., Seok, W., Rhee, S. H., & Samad, A. (2019). Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine. Renewable Energy, 135, 277-287. https://doi.org/10.1016/j.renene.2018.12.023

  • Li, L., Li, Y., Liu, Q., & Lv, H. (2014). A mathematical model for horizontal axis wind turbine blades. Applied Mathematical Modelling, 38(11-12), 2695-2715. https://doi.org/10.1016/j.apm.2013.10.068

  • Navinkumar, B., Parammasivam, K., Rajendran, S., & Mohanavel, V. (2021). CFD analysis of horizontal axis wind turbine braking system using chordwise spacing. Materials Today: Proceedings, 37, 542-552. https://doi.org/10.1016/j.matpr.2020.05.564

  • Pinto, M. L., Franzini, G. R., & Simos, A. N. (2020). A CFD analysis of NREL’s 5MW wind turbine in full and model scales. Journal of Ocean Engineering and Marine Energy, 6(2), 211-220. https://doi.org/10.1007/s40722-020-00162-y

  • Revaz, T., Lin, M., & Porté-Agel, F. (2020). Numerical framework for aerodynamic characterization of wind turbine airfoils: Application to miniature wind turbine WiRE-01. Energies, 13(21), Article 5612. https://doi.org/10.3390/en13215612

  • Santo, G., Peeters, M., Van Paepegem, W., & Degroote, J. (2019). Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation. Renewable Energy, 140, 212-226. https://doi.org/10.1016/j.renene.2019.03.053

  • Satwika, N. A., Hantoro, R., Sarwono, S., & Nugroho, G. (2019). The experimental investigation and numerical analysis on horizontal axis wind turbine with winglet and pitch variations. Engineering Journal, 23(6), 345-360. https://doi.org/10.4186/ej.2019.23.6.345

  • Sudhamshu, A. R., Pandey, M. C., Sunil, N., Satish, N. S., Mugundhan, V., & Velamati, R. K. (2016). Numerical study of effect of pitch angle on performance characteristics of a HAWT. Engineering Science and Technology, an International Journal, 19(1), 632-641. https://doi.org/10.1016/j.jestch.2015.09.010

  • Wang, T., Wang, L., Zhong, W., Xu, B., & Chen, L. (2011). Large-scale wind turbine blade design and aerodynamic analysis. Chinese Science Bulletin, 57(5), 466-472. https://doi.org/10.1007/s11434-011-4856-6

  • Yan, Y., Avital, E., Williams, J., & Cui, J. (2019). CFD analysis for the performance of micro-vortex generator on aerofoil and vertical axis turbine. Journal of Renewable and Sustainable Energy, 11(4), Article 043302. https://doi.org/10.1063/1.5110422

  • Yang, Y. K., Kim, M. Y., Song, Y. W., Choi, S. H., & Park, J. C. (2020). Windcatcher louvers to improve ventilation efficiency. Energies, 13(17), Article 4459. https://doi.org/10.3390/en13174459

  • Ye, Z., Wang, X., Chen, Z., & Wang, L. (2020). Unsteady aerodynamic characteristics of a horizontal wind turbine under yaw and dynamic yawing. Acta Mechanica Sinica, 36(2), 320-338. https://doi.org/10.1007/s10409-020-00947-2

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2640-2021

Download Full Article PDF

Share this article

Recent Articles