Home / Regular Issue / JST Vol. 31 (5) Aug. 2023 / JST-3572-2022

 

In Silico Screening of Breadfruit (Artocarpus altilis) Prenylated Flavonoids Identify Potential SARS-CoV Inhibitors

Nisha Govender, Siti Nur Athirah Mohd Kaspi, Thennavan Krishnan and Zeti-Azura Mohamed-Hussein

Pertanika Journal of Science & Technology, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.01

Keywords: Artocarpus altilis, COVID-19, dietary plant, herbal medicine, molecular docking, prenylated flavonoids, SARS-CoV-2, traditional medicine

Published on: 31 July 2023

Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health threat. Traditional herbals and dietary plants with medicinal values have a long antiviral history and, thus, are extensively studied in COVID-19 therapeutics development. Breadfruit (Artocarpus altilis) is a food crop with rich nutrient composition. This study screened selected breadfruit prenylated flavonoids for their potential inhibitory activities against the SARS-CoV family receptors using molecular docking and molecular dynamics (MD) simulation. The A. altilis prenylated flavonoids were selected as target ligands (artocarpin, artoindonesianin V, artonin M, cudraflavone A and cycloartobiloxanthone) and molecular targets from the SARS-CoV family were designated as receptors. Molecular docking was applied with the Lamarckian Genetic algorithm to measure the receptor-ligand orientation using AutoDock Vina software. The structural interactions of the receptor-ligand complexes were visualised using the Biovia Discovery Studio 4.5. Under all possible receptor-ligand combinations, the complexes’ minimum binding affinities (MBA) ranged from -5.5 to -9.1 kcal/mol and held by hydrophobic interactions, hydrogen bonds and electrostatic attractions. Receptor-ligand complexes with the least MBA (<-6.0 kcal/mol) along with strong structural interactions were validated by MD simulation using the GROMACS software. The 5RE4-artocarpin and 5RE4-artoindonesianin V showed the highest hydrophobic interactions at MBA=-6.6 kcal/mol and -6.4 kcal/mol, respectively. The trajectory analysis of 5RE4-artocarpin and 5RE4-artoindonesianin V complexes was fairly stable throughout a 50 ns MD simulation run. The findings conclude that artocarpin and artoindonesianin V are good potential SARS-CoV family receptor inhibitors.

  • Adewole, S. O., & Oiewole, J. O. (2007). Hyperglycaemic effect of Artocarpus communis Forst (Moraceae) root bark aqueous extract in Wistar rats: Cardiovascular topic. Cardiovascular Journal of Africa, 18(4), 221-227.

  • Ali-Reza, A. S. M., Nasrin, M. S., Hossen, M. A., Rahman, M. A., Jantan, I., Haque, M. A., & Sobarzo-Sanchez, E. (2021). Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites. Critical Reviews in Food Science and Nutrition, 1-31. https://doi.org/10.1080/10408398.2021.2021138

  • Amarasinghe, N. R., Jayasinghe, L., Hara, N., & Fujimoto, Y. Chemical constituents of the fruits of Artocarpus altilis. Biochemical Systematics and Ecology, 36(4), 323-325. https://doi.org/10.1016/j.bse.2007.09.007

  • Aucoin, M., Cardozo, V., McLaren, M. D., Garber, A., Remy, D., Baker, J., Gratton, A., Kala, M. A., Monteiro, S., Warder, C., Perciballi, A., & Cooley, K. (2021). A systematic review on the effects of Echinacea supplementation on cytokine levels: Is there a role in COVID-19? Metabolism Open, 11, Article 100115. https://doi.org/10.1016/j.metop.2021.100115

  • Baba, S., Chan, H. T., Kezuka, M., Inoue, T., & Chan, E. W. C. (2016). Artocarpus altilis and Pandanus tectorius: Two important fruits of Oceania with medicinal values. Emirates Journal of Food and Agriculture, 28(8), 531-539. https://doi.org/10.9755/ejfa.2016-02-207

  • Bailly, C. (2021). Anticancer mechanism of artonin E and related prenylated flavonoids from the medicinal plant Artocarpus elasticus. Asian Journal of Natural Product Biochemistry, 19(2), 45-47. https://doi.org/10.13057/biofar/f190202

  • Bhat, R., & Paliyath, G. (2016). Fruits of tropical climates: Biodiversity and dietary importance. In B. Caballero, P. M. Finglas & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 138-143). Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00337-8

  • Boson, B., Legros, V., Zhou, B., Siret, E., Mathieu, C., Cosset, F.-L., Lavillette, D. & Denolly, S. (2021). The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. Journal of Biological Chemistry, 296, Article 100111. https://doi.org/10.1074/jbc.RA120.016175

  • Chang, S. K., Jiang, Y., & Yang, B. (2021). An update of prenylated phenolics: Food sources, chemistry and health benefits. Trends in Food Science & Technology, 108, 197-213. https://doi.org/10.1016/j.tifs.2020.12.022

  • Cidade, H. M., Nacimento, M. S. J., Pinto, M. M. M., Kijjoa, A., Silva, A. M. S., & Herz, W. (2001). Artelastocarpin and carpelastofuran, two new flavones and cytotoxicities of prenyl flavonoids from Artocarpus elasticus against three cancer cell lines. Planta Medica, 67(9), 867-870. https://doi.org/10.1055/s-2001-18845

  • Daley, O. O., Roberts-Nkrumah, L. B., & Alleyne, A. T. (2020). Morphological diversity of breadfruit [Artocarpus altilis (Parkinson) Fosberg] in the Caribbean. Scientia Horticulturae, 266, Article 109278. https://doi.org/10.1016/j.scienta.2020.109278

  • Das, A., Ahmed, R., Akhtar, S., Begum, K., & Banu, S. (2021). An overview of basic molecular biology of SARS-CoV-2 and current COVID-19 prevention strategies. Gene Reports, 23, Aricle 101122. https://doi.org/10.1016/j.genrep.2021.101122

  • Dawood, A. A. (2020). Mutated COVID-19 may foretell a great risk for mankind in the future. New Microbes and New Infections, 35, Article 100673. https://doi.org/10.1016/j.nmni.2020.100673

  • De Vivo, M., Masetti, M., Bottegoni, G., & Cavalli, A. (2016). Role of molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry, 59(9), 4035-4061. https://doi.org/10.1021/acs.jmedchem.5b01684.

  • Demeke, C. A., Woldeyohanins, A. E., & Kifle, Z. D. (2021). Herbal medicine use for the management of COVID-19: A review article. Metabolism Open, 12, Article 100141. https://doi.org/10.1016/j.metop.2021.100141

  • Dhurga, K., Gunasekaran, G., Senthilraja, P., Manivel, G., & Stalin, A. (2016). Molecular modeling and docking analysis of Pseudomonal bacterial proteins with Eugenol and its derivatives. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 2(1), 40-50.

  • Fang, S. C., Hsu, C. L., Yu, Y. S., & Yen, G. C. (2008). Cytotoxic effects of new geranyl chalcone derivatives isolated from the leaves of Artocarpus communis in SW 872 human liposarcoma cells. Journal of Agricultural and Food Chemistry, 56(19), 8859-8868. https://doi.org/10.1021/jf8017436

  • Hakim, E. H., Achmad, S. A., Juliawaty, L. D., Makmur, L., Syah, Y. M., Aimi, N., Kitajima, M., Takayaman, H., & Ghisalberti, E. L. (2006). Prenylated flavonoids and related compounds of the Indonesian Artocarpus (Moraceae). Journal of Natural Medicines, 60, 161-184. https://doi.org/10.1007/s11418-006-0048-0

  • Hano, Y., Yamagami, Y., Kobayashi, M., Isohata, R., & Nomura, T. (1990). Artonins E and F, two new prenylflavones from the bark of Artocarpus communis Forst. Heterocycles, 31(5), 877-882. https://doi.org/10.3987/COM-90-5350

  • Hari, A., Revikumar, K. G., & Divya, D. (2014). Artocarpus: A review of its phytochemistry and pharmacology. Journal of Pharma Search, 9(1), 7-12.

  • Jalal, T. L., Ahmed, I. A., Mikail, M., Momand, L., Draman, S., Md Isa, M. L., Abdul Rasad, M. S. B., Omar, M. N., Ibrahim, M., & Wahab, R. A. (2015). Evaluation of antioxidant, total phenol and flavonoid content and antimicrobial activities of Artocarpus altilis (Breadfruit) of underutilisedd tropical fruit extracts. Applied Biochemistry and Biotechnology, 175(7), 3231-3243. https://doi.org/10.1007/s12010-015-1499-0

  • Jamil, M. M. A., Ganeson. S., Mammam, H. B., & Wahab, R. A. (2018). Artocarpus altilis extract effect on cervical cancer cells. Materials Today: Proceedings, 5(7), 15559-15566. https://doi.org/10.1016/j.matpr.2018.04.163

  • Jantan, I., Ahmad, W., & Bukhari, S. N. A. (2015). Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Frontiers in Plant Science, 6, Article 655. https://doi.org/10.3389/fpls.2015.00655

  • Jorgensen, W. L. (2004). The many roles of computation in drug discovery. Science, 303(5665), 1813-1818. https://doi.org/10.1126/science.1096361

  • Kaspi, S. N. A. M., Govender, N., & Mohamed-Hussein, Z. A. (2022). Brief communication: Caffeic acid derivatives and polymethoxylated flavonoids from cat’s whiskers (Orthosiphon stamineus) form stable complexes with SARS-CoV molecular targets: An In silico analysis. Pertanika Journal of Tropical Agricultural Science, 45(1), 235-244. https://doi.org/10.47836/pjtas.45.1.13

  • Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints, 2020, Article 2020030226. https://doi.org/10.20944/preprints202003.0226.v1

  • Ko, H. H., Lu, Y. H., Yang, S. Z., Won, S. J., & Lin, C. N. (2005). Cytotoxic prenylflavonoids from Artocarpus elasticus. Journal of Natural Products, 68(11), 1692-1695. https://doi.org/10.1021/np050287j

  • Lan, W. C., Tzeng, C. W., Lin, C. C., Yen, F. L., & Ko, H. H. (2013). Prenylated flavonoids from Artocarpus altilis: Antioxidant activities and inhibitory effects on melanin production. Phytochemistry, 89, 78-88.

  • Lemkul, J. A. (2018). From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), Article 5068. https://doi.org/10.33011/livecoms.1.1.5068

  • Leng, L. Y., Nadzri, N. B., Yee, K. C., Razak, N. B. A., & Shaari, A. R. (2018). Antioxidant and total phenolic content of breadfruit (Artocarpus altilis) leaves. In MATEC Web of Conferences (Vol. 150, p. 06007).. EDP Sciences.

  • Lin, J. A., Wu, C. H., Fang, S. C. & Yen, G. C. (2012). Combining the observation of cell morphology with the evaluation of key inflammatory mediators to assess the anti-inflammatory effects of geranyl flavonoid derivatives in breadfruit. Food Chemistry, 132(4), 2118-2125. https://doi.org/10.1016/j.foodchem.2011.12.070

  • Liu, J., Sun, Y., Qi, J., Chu, F., Wu, H., Gao, F., Li, T., Yan, J., & Gao, G. F. (2010). The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes. The Journal of Infectious Diseases, 202(8), 1171-1180. https://doi.org/10.1086/656315

  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3, Article 33. https://doi.org/10.1186/1758-2946-3-33

  • Page, M. L. (2021). Climate change: Breadfruit could be food of future as planet warms. New Scientist, 251(3356), 11. https://doi.org/10.1016/S0262-4079(21)01817-0

  • Paraiso, I. L., Revel, J. S., & Stevens, J. F. (2020). Potential use of polyphenols in the battle against COVID-19. Current Opinion in Food Science, 32, 149-155. https://doi.org/10.1016/j.cofs.2020.08.004

  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high- throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845-854. https://doi.org/10.1093/bioinformatics/btt055

  • Ragone, D. (2018). Breadfruit-Artocarpus altilis (Parkinson) Fosberg. In S. Rodrigues, O., E. de Oliveira Silva & E. S. de Brito (Eds.), Exotic Fruits (pp. 53-60). Academic Press. https://doi.org/10.1016/B978-0-12-803138-4.00009-5

  • Rehman, S. U., Rehman, S. U., & Yoo, H. H. (2021). COVID-19 challenges and its therapeutics. Biomedicine & Pharmacotherapy, 142, Article 112015. https://doi.org/10.1016/j.biopha.2021.112015

  • Septama, A. W., Jantan, I., & Panichayupakaranant, P. (2018). Flavonoids of Artocarpus heterophyllus Lam. heartwood inhibit the innate immune responses of human phagocytes. Journal of Pharmacy and Pharmacology, 70(9), 1242-1252. https://doi.org/10.1111/jphp.12952

  • Shah, M. K. K., Sirat, H. M., Jamil, S., & Jalil, J. (2016). Flavonoids from the bark of Artocarpus integer var. silvestris and their anti-inflammatory properties. Natural Product Communications, 11(9), 1275-1278. https://doi.org/10.1177/1934578X1601100921

  • Shamaun, S. S., Rahmani, M., Hashim, N. M., Ismail, H. B. M., Sukari, M. A., Lian, G. E. C., & Go, R. (2010). Prenylated flavones from Artocarpus altilis. Journal of Natural Medicines, 64, 478-481. https://doi.org/10.1007/s11418-010-0427-4

  • Shi, S., Li, J., Zhao, X., Liu, Q., & Song, S. J. (2021). A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry, 191, Article 112895. https://doi.org/10.1016/j.phytochem.2021.112895

  • Shieh, W. L., & Lin, C. N. (1992). A quinonoid pyranobenzoxanthone and pyranodihydrobenzoxanthone from Artocarpus communis. Phytochemistry, 31(1), 364-367. https://doi.org/10.1016/0031-9422(91)83081-U

  • Shimizu, K., Kondo, R., Sakai, K., Lee, S. H., & Sato, H. (1998). The Inhibitory Components from Artocarpus incisus on Melanin Biosynthesis. Planta Medica, 64(5), 408-412. https://doi.org/10.1055/s-2006-957470

  • Sikarwar, M. S., Hui, B. J., Subramaniam, K., Valeisamy, B. D., Yean, L. K., & Balaji, K. (2014). A review on Artocarpus altilis (Parkinson) Fosberg (breadfruit). Journal of Applied Pharmaceutical Science, 4(08), 091-097.

  • Skariyachan, S., Gopal, D., Chakrabarti, S., Kempanna, P., Uttarkar, A., Muddebihalkar, A. G., & Niranjan, V. (2020). Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies-deciphering the scope of repurposed drugs. Computational Biology Medicine, 126, Article 104054.

  • Sofoini, T., Donno, D., Jeannoda, V., Rakotoniaina, E., Hamidou, S., Achmet, S. M., Solo, N. R., Afraitane, K., Giacoma, C., & Beccaro, G. L. (2018). Bioactive compounds, nutritional traits, and antioxidant properties of Artocarpus altilis (Parkinson) fruits: Exploiting potential functional food for food security on the Comoros Islands. Journal of Food Quality, 2018, Article 5697928. https://doi.org/10.1155/2018/5697928

  • Suhartati, T., Yandri, Y., & Hadi, S. (2008).The bioactivity test of Artonin E from the bark of Artocarpus rigida Blume. European Journal of Scientific Research, 23(2), 330-337.

  • Tang, Y., Liu, J., Zhang, D., Xu, Z., Ji, J., & Wen, C. (2020). Cytokine storm in COVID-19 : The current evidence and treatment strategies. Frontiers in Immunology, 11, Article 1708. https://doi.org/10.3389/fimmu.2020.01708

  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334

  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell Jr, A. D. (2009). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671-690. https://doi.org/10.1002/jcc.21367

  • Wei, B. L., Weng, J. R., Chiu, P. H., Hung, C. F., Wang, J. P. & Lin, C. N. (2005). Anti-inflammatory flavonoids from Artocarpus heterophyllus and Artocarpus communis. Journal of Agricultural and Food Chemistry, 53, 3867-3871. https://doi.org/10.1021/jf047873n

  • Weng, J. R., Chan, S. C., Lu, Y. H., Lin, H. C., Ko, H. H., & Lin, C. N. (2006). Antiplatelet prenylflavonoids from Artocarpus communis. Phytochemistry, 67(8), 824-829. https://doi.org/10.1016/j.phytochem.2006.01.030

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3572-2022

Download Full Article PDF

Share this article

Related Articles